\(\sqrt{X+2}\)+\(\sqrt{16x+32}\)-\(\sqrt...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2023

\(\sqrt{x+2}\) + \(\sqrt{16x+32}\) - \(\sqrt{4x+8}\) = 16 (đk \(x\ge\) -2)

\(\sqrt{x+2}\) + \(\sqrt{16\left(x+2\right)}\) - \(\sqrt{4\left(x+2\right)}\) = 16

\(\sqrt{x+2}\) + 4\(\sqrt{x+2}\) - 2\(\sqrt{x+2}\) = 16

( 1 + 4 - 2)\(\sqrt{x+2}\) = 16

         3\(\sqrt{x+2}\) = 16

           \(\sqrt{x+2}\) = \(\dfrac{16}{3}\)

             \(x+2\) = \(\dfrac{256}{9}\)

             \(x\) = \(\dfrac{256}{9}\) - 2

            \(x\) = \(\dfrac{238}{9}\) (thỏa mãn)

Vậy \(x=\dfrac{238}{9}\)

 

      

10 tháng 5 2018

1000 bang 2

20 tháng 8 2020

\(\sqrt{-x}\) (mk nghĩ là nó vô nghiệm ngay từ đầu rồi)

\(\sqrt{16x^2-25}=\sqrt{\left(4x-5\right)\left(4x+5\right)}\)

Đkxđ : \(\left\{{}\begin{matrix}4x-5\ge0\\4x+5\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x\ge5\\4x\ge-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{5}{4}\\x\ge-\frac{5}{4}\end{matrix}\right.\)

\(\sqrt{4x^2-49}=\sqrt{\left(2x-7\right)\left(2x+7\right)}\)

Đkxđ : \(\left\{{}\begin{matrix}2x-7\ge0\\2x+7\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x\ge7\\2x\ge-7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{7}{2}\\x\ge-\frac{7}{2}\end{matrix}\right.\)

\(\sqrt{8-x^2}\)

đkxđ : \(8-x^2\ge0\Leftrightarrow-x^2\ge-8\Leftrightarrow x^2\le8\Leftrightarrow x\le\sqrt{8}\)

20 tháng 8 2020

ko bt đề bài của bài này là gì vậy bạn

13 tháng 6 2018

Mình làm một vài câu thôi nhé, các câu còn lại tương tự.

Giải:

a) ??? Đề thiếu

b) \(\sqrt{-3x+4}=12\)

\(\Leftrightarrow-3x+4=144\)

\(\Leftrightarrow-3x=140\)

\(\Leftrightarrow x=\dfrac{-140}{3}\)

Vậy ...

c), d), g), h), i), p), q), v), a') Tương tự b)

w), x) Mình đã làm ở đây:

Câu hỏi của Ami Yên - Toán lớp 9 | Học trực tuyến

z) \(\sqrt{16\left(x+1\right)^2}-\sqrt{9\left(x+1\right)^2}=4\)

\(\Leftrightarrow4\left(x+1\right)-3\left(x+1\right)=4\)

\(\Leftrightarrow x+1=4\)

\(\Leftrightarrow x=3\)

Vậy ...

b') \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)

\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}=\sqrt{x+1}\)

\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-\sqrt{x+1}=0\)

\(\Leftrightarrow4\sqrt{x+1}=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy ...

13 tháng 6 2018

- Câu a có chút thiếu sót, mong thông cảm :)

\(\sqrt{3x-1}\) = 4

21 tháng 9 2017

aを見つける= 175度はどれくらい尋ねる

28 tháng 7 2018

a)  ĐK:  \(x\ge5\)

 \(\sqrt{4x-20}+\frac{1}{3}\sqrt{9x-45}-\frac{1}{5}\sqrt{16x-80}=0\)

\(\Leftrightarrow\)\(\sqrt{4\left(x-5\right)}+\frac{1}{3}\sqrt{9\left(x-5\right)}-\frac{1}{5}\sqrt{16\left(x-5\right)}=0\)

\(\Leftrightarrow\)\(2\sqrt{x-5}+\sqrt{x-5}-\frac{4}{5}\sqrt{x-5}=0\)

\(\Leftrightarrow\)\(\frac{11}{5}\sqrt{x-5}=0\)

\(\Leftrightarrow\)\(x-5=0\)

\(\Leftrightarrow\)\(x=5\) (t/m)

Vậy

b)  \(-5x+7\sqrt{x}=-12\)

\(\Leftrightarrow\)\(5x-7\sqrt{x}-12=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)

đến đây tự làm

c) d) e) bạn bình phương lên

28 tháng 7 2018

f)  \(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^4-2x^2+1\right)+25}\)

             \(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2}\)

           \(\ge\sqrt{9}+\sqrt{25}=8\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}}\)\(\Leftrightarrow\)\(x=-1\)

Vậy...

4 tháng 8 2018

a. ĐKXĐ: \(4-5x\ge0\) \(\Leftrightarrow-5x\ge-4\Leftrightarrow5x\le4\Leftrightarrow x\le\dfrac{4}{5}\)

\(\sqrt{4-5x}=12\)

\(\Leftrightarrow4-5x=2\sqrt{3}\)

\(\Leftrightarrow-5x=-4-2\sqrt{3}\)

\(\Leftrightarrow x=\dfrac{-4-2\sqrt{3}}{-5}\)

\(\Leftrightarrow x=\dfrac{4+2\sqrt{3}}{5}\left(KTMĐKXĐ\right)\)

Vậy x không tồn tại

b. \(10-2\sqrt{2x+1}=4\) (1)

\(ĐKXĐ:2x+1\ge0\Leftrightarrow2x\ge-1\Leftrightarrow x\ge-\dfrac{1}{2}\)

(1) => \(-2\sqrt{2x+1}=-6\)

\(\Leftrightarrow\sqrt{2x+1}=3\)

\(\Leftrightarrow2x+1=\sqrt{3}\)

\(\Leftrightarrow2x=\sqrt{3}-1\)

\(\Leftrightarrow x=\dfrac{\sqrt{3}-1}{2}\left(TMĐKXĐ\right)\)

c. \(5-\sqrt{x-1}=7\) (1)

ĐKXĐ: \(x-1\ge0\Leftrightarrow x\ge1\)

(1) <=> \(-\sqrt{x-1}=2\) (vô lí)

Vậy không tồn tại x

9 tháng 8 2018

bài kia làm sai rùi:

a. \(\sqrt{4-5x}=12\) (1)

ĐKXĐ: \(4-5x\ge0\Leftrightarrow x\le\dfrac{4}{5}\)

\(\Leftrightarrow4-5x=144\)

\(\Leftrightarrow5x=-140\)

\(\Leftrightarrow x=-28\left(TMĐKXĐ\right)\)

Vậy phương trình có nghiệm là \(S=\left\{-28\right\}\)

b. \(10-2\sqrt{2x+1}=4\) (1)

ĐKXĐ: \(2x+1\ge0\Leftrightarrow x\ge-\dfrac{1}{2}\)

\(\left(1\right)\Leftrightarrow2\sqrt{2x+1}=6\)

\(\Leftrightarrow\sqrt{2x+1}=3\)

\(\Leftrightarrow2x+1=9\)

\(\Leftrightarrow2x=8\)

\(\Leftrightarrow x=4\left(TMĐKXĐ\right)\)

Vậy phương trình có nghiệm là: \(S=\left\{4\right\}\)

c. Ở dưới làm đúng rồi

d. \(\sqrt{10+\sqrt{3x}}=2+\sqrt{6}\) (1)

ĐKXĐ: \(3x\ge0\Leftrightarrow x\ge0\)

(1) \(\Leftrightarrow10+\sqrt{3x}=\left(2+\sqrt{6}\right)^2\)

\(\Leftrightarrow10+\sqrt{3x}=10+4\sqrt{6}\)

\(\Leftrightarrow\sqrt{3x}=-10+10+4\sqrt{6}\)

\(\Leftrightarrow\sqrt{3x}=4\sqrt{6}\)

\(\Leftrightarrow3x=96\)

\(\Leftrightarrow x=32\left(TMĐKXĐ\right)\)

Vậy phương trình có nghiệm là: \(S=\left\{32\right\}\)

e. \(\sqrt{x+1}+10=2\sqrt{x+1}-2\) (1)

ĐKXĐ: \(x+1\ge0\Leftrightarrow x\ge-1\)

\(\left(1\right)\Leftrightarrow\sqrt{x+1}-2\sqrt{x+1}=-10-2\)

\(\Leftrightarrow-\sqrt{x+1}=-12\)

\(\Leftrightarrow\sqrt{x+1}=12\)

\(\Leftrightarrow x+1=144\)

\(\Leftrightarrow x=143\left(TMĐKXĐ\right)\)

Vậy phương trình có nghiệm là \(S=\left\{143\right\}\)

f. \(\sqrt{16x+32}-5\sqrt{x+2}=-2\) (1)

ĐKXĐ: \(\left[{}\begin{matrix}\sqrt{16x+32\ge0}\\\sqrt{x+2\ge0}\end{matrix}\right.\left[{}\begin{matrix}x\ge-2\\x\ge-2\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{16\left(x+2\right)}-5\sqrt{x+2}=-2\)

\(\Leftrightarrow4\sqrt{x+2}-5\sqrt{x+2}=-2\)

\(\Leftrightarrow-\sqrt{x+2}=-2\)

\(\Leftrightarrow\sqrt{x+2}=2\)

\(\Leftrightarrow x+2=4\)

\(\Leftrightarrow x=2\left(TMĐKXĐ\right)\)

Vậy phương trình có nghiệm là \(S=\left\{2\right\}\)

AH
Akai Haruma
Giáo viên
16 tháng 8 2018

Lời giải:

a)

ĐK: \(\forall x\in\mathbb{R}\)

Ta có: \(\sqrt{3x^2}-\sqrt{12}=0\)

\(\Rightarrow \sqrt{3x^2}=\sqrt{12}\)

\(\Rightarrow 3x^2=12\Rightarrow x^2=4\Rightarrow x=\pm 2\) (đều thỏa mãn)

b) ĐK: \(\forall x\in\mathbb{R}\)

\(\sqrt{(x-3)^2}=9\)

\(\Leftrightarrow |x-3|=9\Rightarrow \left[\begin{matrix} x-3=9\\ x-3=-9\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=12\\ x=-6\end{matrix}\right.\)

c) ĐK: $x\in\mathbb{R}$
\(\sqrt{4x^2+4x+1}=6\)

\(\Leftrightarrow \sqrt{(2x)^2+2.2x+1}=6\)

\(\Leftrightarrow \sqrt{(2x+1)^2}=6\)

\(\Leftrightarrow |2x+1|=6\)

\(\Rightarrow \left[\begin{matrix} 2x+1=6\\ 2x+1=-6\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{5}{2}\\ x=-\frac{7}{2}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
16 tháng 8 2018

d) ĐK: \(x\geq 1\)

\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)

\(\Leftrightarrow \sqrt{16(x-1)}-\sqrt{9(x-1)}+\sqrt{4(x-1)}+\sqrt{x-1}=8\)

\(\Leftrightarrow 4\sqrt{x-1}-3\sqrt{x-1}+2\sqrt{x-1}+\sqrt{x-1}=8\)

\(\Leftrightarrow 4\sqrt{x-1}=8\Rightarrow \sqrt{x-1}=2\)

\(\Rightarrow x=2^2+1=5\) (thỏa mãn)

e)

ĐK: \(-4\leq x\leq \frac{1}{2}\)

\(\sqrt{1-x}+\sqrt{1-2x}=\sqrt{x+4}\)

\(\Leftrightarrow \sqrt{1-x}-1+\sqrt{1-2x}-1=\sqrt{x+4}-2\)

\(\Leftrightarrow \frac{(1-x)-1}{\sqrt{1-x}+1}+\frac{(1-2x)-1}{\sqrt{1-2x}+1}=\frac{(x+4)-2^2}{\sqrt{x+4}+2}\)

\(\Leftrightarrow \frac{-x}{\sqrt{1-x}+1}+\frac{-2x}{\sqrt{1-2x}+1}=\frac{x}{\sqrt{x+4}+2}\)

\(\Leftrightarrow x\left(\frac{1}{\sqrt{x+4}+2}+\frac{1}{\sqrt{1-x}+1}+\frac{2}{\sqrt{1-2x}+1}\right)=0\)

Dễ thấy biểu thức trong ngoặc lớn lớn hơn $0$

Do đó: \(x=0\) là nghiệm duy nhất của pt.