\(\sqrt{x-1}+\sqrt{x+3} +2\sqrt{(x-1)(x+3)} =4-2x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 10 2019

ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x+3}+2x+2+2\sqrt{\left(x-1\right)\left(x+3\right)}-6=0\)

Đặt \(\sqrt{x-1}+\sqrt{x+3}=a>0\)

\(\Leftrightarrow a^2=2x+2+2\sqrt{\left(x-1\right)\left(x+3\right)}\)

Phương trình trở thành:

\(a^2+a-6=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x-1}+\sqrt{x+3}=2\)

\(x\ge1\Rightarrow\left\{{}\begin{matrix}\sqrt{x-1}\ge0\\\sqrt{x+3}\ge2\end{matrix}\right.\) \(\Rightarrow\sqrt{x-1}+\sqrt{x-3}\ge2\)

Dấu "=" xảy ra khi và chỉ khi \(x=1\)

Vậy pt có nghiệm duy nhất \(x=1\)

27 tháng 10 2019

Đang cần gấp . Giúp mình với :(((

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

8) ĐKXĐ: $-2\leq x\leq 1$

PT $\Leftrightarrow (2x+4)-4\sqrt{2x+4}+4+[(1-x)-2\sqrt{1-x}+1]=0$

$\Leftrightarrow (\sqrt{2x+4}-2)^2+(\sqrt{1-x}-1)^2=0$

Dễ thấy: $(\sqrt{2x+4}-2)^2; (\sqrt{1-x}-1)^2\geq 0$ với mọi $x\in [-2;1]$ nên để tổng của chúng bằng $0$ thì:

$(\sqrt{2x+4}-2)^2=(\sqrt{1-x}-1)^2=0$

$\Leftrightarrow \sqrt{2x+4}=2; \sqrt{1-x}-1=0$

$\Leftrightarrow x=0$ (thỏa mãn)

Vậy.....

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

7)

ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow x^2+[(x+1)-2\sqrt{x+1}+1]=0$

$\Leftrightarrow x^2+(\sqrt{x+1}-1)^2=0$

Ta thấy:

$x^2\geq 0; (\sqrt{x+1}-1)^2\geq 0$ với mọi $x\geq -1$

Do đó để tổng của chúng bằng $0$ thì $x^2=(\sqrt{x+1}-1)^2=0$

$\Leftrightarrow x=0$ (thỏa mãn)

Vậy.......

2 tháng 7 2017

mấy câu này chắc xài giá trị tuyệt đối

đăng ít thôi bn sợ quá :))

NV
7 tháng 11 2019

a/ ĐKXĐ: \(x\ge1\)

Khi \(x\ge1\) ta thấy \(\left\{{}\begin{matrix}VT>0\\VP=1-x\le0\end{matrix}\right.\) nên pt vô nghiệm

b/ \(x\ge1\)

\(\sqrt{\sqrt{x-1}\left(x-2\sqrt{x-1}\right)}+\sqrt{\sqrt{x-1}\left(x+3-4\sqrt{x-1}\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-1\right)^2}+\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-2\right)^2}=\sqrt{x-1}\)

Đặt \(\sqrt{x-1}=a\ge0\) ta được:

\(\sqrt{a\left(a-1\right)^2}+\sqrt{a\left(a-2\right)^2}=a\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\Rightarrow x=1\\\sqrt{\left(a-1\right)^2}+\sqrt{\left(a-2\right)^2}=\sqrt{a}\left(1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left|a-1\right|+\left|a-2\right|=\sqrt{a}\)

- Với \(a\ge2\) ta được: \(2a-3=\sqrt{a}\Leftrightarrow2a-\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}\sqrt{a}=-1\left(l\right)\\\sqrt{a}=\frac{3}{2}\end{matrix}\right.\)

\(\Rightarrow a=\frac{9}{4}\Rightarrow\sqrt{x-1}=\frac{9}{4}\Rightarrow...\)

- Với \(0\le a\le1\) ta được:

\(1-a+2-a=\sqrt{a}\Leftrightarrow2a+\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x-1}=1\Rightarrow...\)

- Với \(1< a< 2\Rightarrow a-1+2-a=\sqrt{a}\Leftrightarrow a=1\left(l\right)\)

NV
7 tháng 11 2019

c/ ĐKXĐ: \(x\ge\frac{49}{14}\)

\(\Leftrightarrow\sqrt{14x-49+14\sqrt{14x-49}+49}+\sqrt{14x-49-14\sqrt{14x-49}+49}=14\)

\(\Leftrightarrow\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)

\(\Leftrightarrow\left|\sqrt{14x-49}+7\right|+\left|7-\sqrt{14x-49}\right|=14\)

\(VT\ge\left|\sqrt{14x-49}+7+7-\sqrt{14x-49}\right|=14\)

Nên dấu "=" xảy ra khi và chỉ khi:

\(7-\sqrt{14x-49}\ge0\)

\(\Leftrightarrow14x-49\le49\Leftrightarrow x\le7\)

Vậy nghiệm của pt là \(\frac{49}{14}\le x\le7\)

4 tháng 12 2019

a) ĐKXĐ: x\(\ge\)-3

PT\(\Leftrightarrow\sqrt{\left(x+7\right)\left(x+3\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)

Đặt \(\left(\sqrt{x+3},\sqrt{x+7}\right)=\left(a,b\right)\)                 \(\left(a,b\ge0\right)\)

PT\(\Leftrightarrow ab=3a+2b-6\Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\Leftrightarrow\orbr{\begin{cases}a=2\\b=3\end{cases}}\)(TM ĐK)

TH 1: a=2\(\Leftrightarrow\sqrt{x+3}=2\Leftrightarrow x+3=4\Leftrightarrow x=1\)(tm)

TH 2: b=3\(\Leftrightarrow\sqrt{x+7}=3\Leftrightarrow x+7=9\Leftrightarrow x=2\)(tm)

Vậy tập nghiệm phương trình S={1; 2}