K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2019

\(\sqrt{x-1}=2\)

\(\Rightarrow x-1=4\)

\(\Rightarrow x=5\)

hok tốt

24 tháng 11 2019

Ta có:

\(\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=2^2\)

\(\Leftrightarrow x-1=4\)

\(\Leftrightarrow x=5\)

Vậy x=5

28 tháng 5 2016

ko biết

28 tháng 5 2016

Chưa cập nhật

14 tháng 10 2018

a) Gọi biểu thức trên là A.

 \(ĐK:x\ge0\). Ta có: \(A=\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{3}{\sqrt{x}+1}\) (1)

Để \(x\in Z\) thì \(\frac{3}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\sqrt{x}=\left\{0;-2;2;-4\right\}\) nhưng do không có căn bậc 2 của số âm nên:

\(\sqrt{x}\in\left\{0;2\right\}\Leftrightarrow x\in\left\{0;4\right\}\). Thay vào (1) để thử lại ta thấy chỉ có x = 0 thỏa mãn.

Vậy có 1 nghiệm là x = 0

b) Gọi biểu thức trên là B. ĐK: \(x\ge0\)

\(B=\frac{2\left(\sqrt{2}-5\right)}{\sqrt{x}+1}=\frac{2\sqrt{2}-10}{\sqrt{x}+1}=\frac{2\sqrt{2}}{\sqrt{x}+1}-\frac{10}{\sqrt{x}+1}\)

Để \(x\in Z\) thì \(\frac{10}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Đến đây bạn tiếp tục lập bảng tìm \(\sqrt{x}\) rồi bình phương tất cả các giá trị của \(\sqrt{x}\) để tìm được các giá trị của x nhé!. Nhưng lưu ý rằng làm xong phải thử lại bằng cách thế vào B để tìm nghiệm chính xác nhất nhé!

c) Tương tự như trên,bạn tự làm

d) Tương tự như câu a),bạn tự làm. Mình lười òi =))

24 tháng 12 2023

a: Sửa đề: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne9\end{matrix}\right.\)

Để A là số nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

=>\(\sqrt{x}-3+4⋮\sqrt{x}-3\)

=>\(4⋮\sqrt{x}-3\)

=>\(\sqrt{x}-3\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)

=>\(\sqrt{x}\in\left\{4;2;5;1;7\right\}\)

=>\(x\in\left\{16;4;25;1;49\right\}\)

b: loading...

loading...

9 tháng 10 2016

CÁC câu này cứ bình phương 2 vế là ra ấy mà 

3 tháng 11 2018

1) ĐKXĐ: \(x\ge0\)

\(\sqrt{x}=2\sqrt{2}\Rightarrow x=8\left(tmđkxđ\right)\)

2) ĐKXĐ: \(x\ge-1\)

\(\sqrt{\frac{x+1}{2}}=\frac{\sqrt{5}}{2}\)

\(\Leftrightarrow\frac{x+1}{2}=\frac{5}{4}\)

\(\Leftrightarrow2x+2=5\Leftrightarrow x=\frac{3}{2}\left(TMĐKXĐ\right)\)

3 tháng 11 2018

1, 

\(\sqrt{x}=2\sqrt{2}\)

=> \(\left(\sqrt{x}\right)=\left(2\sqrt{2}\right)^2\)

=> \(x=8\)

2.

\(\sqrt{\frac{x+1}{2}}=\frac{\sqrt{5}}{2}\)

=> \(\left(\sqrt{\frac{x+1}{2}}\right)=\left(\frac{\sqrt{5}}{2}\right)^2\)

=>  \(\frac{x+1}{2}=\frac{5}{4}\)

=> 4 ( x + 1 ) = 5.2

=> 4x + 4 = 10

=> 4x = 6

=. x = \(\frac{3}{2}\)