\(\sqrt{\left(x-4\right)^3\cdot\left(1-x\right)^5}với1< x< 4\)4

Thực hiện phé...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

a/\(x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{\left(x-3\right)^2}=x+3+\left|x-3\right|=x+3+3-x=6\)

b/ \(\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{\left(x+2\right)^2}-\left|x\right|=\left|x+2\right|-\left|x\right|=-x-2-\left(-x\right)=-x-2+x=-2\)

c/ \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\cdot\left(x-1\right)=\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=\left|x-1\right|\)

d/ \(\left|x-2\right|+\dfrac{\sqrt{x^2-4x+4}}{x-2}=2-x+\dfrac{\sqrt{\left(x-2\right)^2}}{x-2}=2-x+\dfrac{\left|x-2\right|}{x-2}=2-x+\dfrac{-\left(x-2\right)}{x-2}=2-x-1=1-x\)

19 tháng 10 2018

1/ Thực hiện phép tính

a) 9220+12235

 \(=\sqrt{\left(\sqrt{5}-\sqrt{4}\right)^2}+\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}\)

\(=\sqrt{5}-\sqrt{4}+\sqrt{7}-\sqrt{5}=\sqrt{7}-\sqrt{4}=\sqrt{7}-2\)

a: \(=\dfrac{1}{x-y}\cdot x^2\cdot\left(x-y\right)=x^2\)

b: \(=\sqrt{27\cdot48}\cdot\left|a-2\right|=36\left(a-2\right)\)

c: \(=\left(\sqrt{2012}+\sqrt{2011}\right)^2\)

d: \(=\dfrac{8}{7}\cdot\dfrac{-x}{y+1}\)

e: \(=\dfrac{11}{12}\cdot\dfrac{x}{-y-2}=\dfrac{-11x}{12\left(y+2\right)}\)

14 tháng 9 2017

1) ĐK: \(x\ge-2012\)

Đặt \(\sqrt{x+2012}=t\left(t\ge0\right)\Rightarrow x=t^2-2012\)

Ta có hệ \(\hept{\begin{cases}x^2+t=2012\\-x+t^2=2012\end{cases}}\)

\(\Rightarrow x^2+t-t^2+x=0\Rightarrow\left(x+t\right)\left(x-t+1\right)=0\)

Với \(x+t=0\Leftrightarrow\sqrt{x+2012}=x\Rightarrow x^2-x-2012=0\Rightarrow x=\frac{\sqrt{8049}+1}{2}\)

Với \(x-t+1=0\Leftrightarrow\sqrt{x+2012}=x+1\Rightarrow x^2+x-2011=0\Rightarrow x=\frac{\sqrt{8045}-1}{2}\)

2) ĐK \(\orbr{\begin{cases}x< -\frac{1}{3}\\x>1\end{cases}}\)

Đặt \(\sqrt{\frac{3x+1}{x-1}}=t\), phương trình trở thành \(4t+\frac{1}{t}=4\Rightarrow\frac{4t^2-4t+1}{t}=0\Rightarrow t=\frac{1}{2}\)

Khi đó ta có \(\sqrt{\frac{3x+1}{x-1}}=\frac{1}{2}\Rightarrow\frac{3x+1}{x-1}=\frac{1}{4}\Rightarrow11x+5=0\)

\(\Rightarrow x=-\frac{5}{11}\left(tm\right)\)

c) TH1: \(x\le-1\), phương trình trở thành \(\left(x-3\right)\left(x+1\right)-4\sqrt{\left(x-3\right)\left(x+1\right)}+3=0\)

Đặt \(\sqrt{\left(x-3\right)\left(x+1\right)}=t\left(t\ge0\right)\) thì \(t^2-4t+3=0\Rightarrow\orbr{\begin{cases}t=1\\t=3\end{cases}}\)

Với \(t=1\Rightarrow\left(x-3\right)\left(x+1\right)=1\Rightarrow x^2-2x-4=0\Rightarrow\orbr{\begin{cases}x=1+\sqrt{5}\left(l\right)\\x=1-\sqrt{5}\left(tm\right)\end{cases}}\)

Với \(t=3\Rightarrow\left(x-3\right)\left(x+1\right)=9\Rightarrow x^2-2x-12=0\Rightarrow\orbr{\begin{cases}x=1+\sqrt{13}\left(l\right)\\x=1-\sqrt{13}\left(tm\right)\end{cases}}\)

Với \(x>3\), phương trình trở thành \(\left(x-3\right)\left(x+1\right)+4\sqrt{\left(x-3\right)\left(x+1\right)}+3=0\)

Đặt \(\sqrt{\left(x-3\right)\left(x+1\right)}=t\left(t\ge0\right)\) thì \(t^2+4t+3=0\Rightarrow\orbr{\begin{cases}t=-1\\t=-3\end{cases}\left(l\right)}\)

Vậy pt có 2 nghiệm \(x=1-\sqrt{5}\) hoặc \(x=1-\sqrt{13}\)

8 tháng 7 2018

a) \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)

\(=\sqrt{13-2\sqrt{40}}-\sqrt{53+12\sqrt{10}}\)

\(=\sqrt{\left(\sqrt{8}\right)^2-2.\sqrt{8}.\sqrt{5}+\left(\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}\right)^2+2.3\sqrt{5}.2\sqrt{2}+\left(2\sqrt{2}\right)^2}\)

\(=\sqrt{\left(\sqrt{8}-\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}+2\sqrt{2}\right)^2}\)

\(=\left|\sqrt{8}-\sqrt{5}\right|-\left|3\sqrt{5}+2\sqrt{2}\right|\)

= √8 - √5 - 3√5 - 2√2 = -4√5

b) (1+√3-√2).(1+√3+√2)= [(1+√3)^2-(√2)^2] = 4+2√3-2=2+2√3

8 tháng 7 2018

a) =sprt{13-=sprt{160}} - =sprt{53+4=sprt{90}}

= =sprt{(=sprt{8} - =sprt{5})2 } - =sprt{(=sprt{45} + =sprt{8})2 }

= =sprt{8} - =sprt{5} - =sprt{45} - =sprt{8}

= -3=sprt{5}

b) ( 1 + =sprt{3} - =sprt{2} )( 1+ =sprt{3} + =sprt{2} )

=  ( 1 + =sprt{3} )2 - (=sprt{2})2

= 4 + 2=sprt{3} - 2

=2 + 2=sprt{3}