Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để nó có nghĩa thì
\(\hept{\begin{cases}x-0,5\ge0\\x-\sqrt{x-0,5}>0\end{cases}}\)
<=> x \(\ge\frac{1}{2}\)
a: ĐKXĐ: (8x^2+3)/(x^2+4)>=0
=>\(x\in R\)
b: ĐKXĐ: -3(x^2+2)>=0
=>x^2+2<=0(vô lý)
d: ĐKXĐ: -x^2-2>2
=>-x^2>2
=>x^2<-2(vô lý)
d: ĐKXĐ: 4(3x+1)>=0
=>3x+1>=0
=>x>=-1/3
\(a,\sqrt{\dfrac{8x^2+3}{4+x^2}}\) có nghĩa \(\Leftrightarrow\dfrac{8x^2+3}{4+x^2}\ge0\Leftrightarrow4+x^2\ge0\) (luôn đúng)
Vậy căn thức trên có nghĩa với mọi x.
\(b,\sqrt{-3\left(x^2+2\right)}\) có nghĩa \(\Leftrightarrow-3\left(x^2+2\right)\ge0\Leftrightarrow x^2+2\le0\Leftrightarrow x^2\le-2\) (vô lí)
Vậy không có giá trị x để căn thức có nghĩa.
\(c,\sqrt{4\left(3x+1\right)}\) có nghĩa \(\Leftrightarrow3x+1\ge0\Leftrightarrow3x\ge-1\Leftrightarrow x\ge-\dfrac{1}{3}\)
Vậy không có giá trị x để căn thức có nghĩa.
\(d,\sqrt{\dfrac{5}{-x^2-2}}\) có nghĩa \(\Leftrightarrow-x^2-2>0\Leftrightarrow x^2< -2\) (vô lí)
Vậy không có giá trị x để căn thức có nghĩa.
Mãi không thấy ai sol nên mình làm bạn xem nhé ^_^
a)
Để căn bậc 2 có nghĩa tức là \(\left(3-x\right)\left(x+1\right)\ge0\Leftrightarrow-1\le x\le3\)
b)
Để căn bậc 2 có nghĩa tức là \(\frac{2-x}{x-1}\ge0\) mặt khác cũng cần có điều kiện \(x-1\ne0\)
\(\Rightarrow1< x\le2\)
\(\sqrt{25-x^2}\) lớn hơn hoặc= 0
=> 25-x2 lớn hơn hoặc= 0
=> -x2 lớn hơn hoặc= -25
x2 bé hơn hoặc =25
x bé hơn hoặc =5
Để căn thức \(\sqrt{\dfrac{2x+1}{x^2+1}}\) có nghĩa thì:
\(\left\{{}\begin{matrix}\dfrac{2x+1}{x^2+1}\ge0\\x^2+1\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x+1\ge0\left(vì.x^2+1>0\forall x\right)\\x^2+1\ne0\forall x\end{matrix}\right.\)
\(\Rightarrow2x\ge-1\Leftrightarrow x\ge-\dfrac{1}{2}\)
#\(Toru\)
\(\sqrt{\dfrac{2x+1}{x^2+1}}\)
Có nghĩa khi:
\(\dfrac{2x+1}{x^2+1}\ge0\)
\(\Leftrightarrow2x+1\ge0\)
\(\Leftrightarrow2x\ge-1\)
\(\Leftrightarrow x\ge-\dfrac{1}{2}\)
Vậy: ...
a) ĐKXĐ: \(\dfrac{2x+1}{x^2+1}\ge0\Leftrightarrow2x+1\ge0\Leftrightarrow x\ge-\dfrac{1}{2}\)
b) \(\sqrt[3]{-27}+\sqrt[3]{64}-\dfrac{\sqrt[3]{-128}}{\sqrt[3]{2}}=-3+4-\sqrt[3]{-64}=1+4=5\)
a: ĐKXĐ: \(x\ge-\dfrac{1}{2}\)
b: Ta có: \(\sqrt[3]{-27}+\sqrt[3]{64}-\dfrac{\sqrt[3]{-128}}{\sqrt[3]{2}}\)
\(=-3+4-\left(-4\right)\)
=-3+4+4
=5
\(\sqrt{\frac{x+1}{x-1}}\)\(đkxđ\Leftrightarrow\hept{\begin{cases}\frac{x+1}{x-1}\ge0\\x-1\ne0\end{cases}}\)
\(\frac{x+1}{x-1}\ge0\)\(\Rightarrow\orbr{\begin{cases}x+1\ge0;x-1\ge0\\x+1< 0;x-1< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-1;x\ge1\\x< -1;x< 1\end{cases}\Rightarrow\orbr{\begin{cases}x\ge1\\x< -1\end{cases}}}\)
Và \(x-1\ne0\Rightarrow x\ne1\)
\(\Rightarrow x>1\)Hoặc \(x< -1\)