Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn:
Biến đổi về dạng: \(\frac{\left(4-\sqrt{x-3}\right)^2}{\sqrt{x-3}}+\frac{\left(2-\sqrt{y-1}\right)^2}{\sqrt{y-1}}+\frac{\left(35-\sqrt{z-665}\right)^2}{\sqrt{z-665}}=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-3}=4\\\sqrt{y-1}=2\\\sqrt{z-665}=35\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=9\\y=5\\z=1890\end{cases}}\)
Đây là câu trả lời cho bạn nào cần thiết bài này !
đk: \(\hept{\begin{cases}x\ge3\\y\ge1\\z\ge665\end{cases}}\)
Ta có: \(\frac{16}{\sqrt{x-3}}+\frac{4}{\sqrt{y-1}}+\frac{1225}{\sqrt{z-665}}=82-\sqrt{x-3}-\sqrt{y-1}-\sqrt{x-665}\)
<=> \(\left(\frac{16}{\sqrt{x-3}}+\sqrt{x-3}\right)+\left(\frac{4}{\sqrt{y-1}}+\sqrt{y-1}\right)+\left(\frac{1225}{\sqrt{z-665}}+\sqrt{z-665}\right)=82\)
Mà \(VT\ge2\sqrt{\frac{16}{\sqrt{x-3}}\cdot\sqrt{x-3}}+2\sqrt{\frac{4}{\sqrt{y-1}}\cdot\sqrt{y-1}}+2\sqrt{\frac{1225}{\sqrt{z-665}}\cdot\sqrt{z-665}}\)
\(=2\cdot4+2\cdot2+2\cdot35=82\left(\forall x,y,z\right)\)
Dấu "=" xảy ra khi: \(\frac{16}{\sqrt{x-3}}=\sqrt{x-3}\) ; \(\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\) ; \(\frac{1225}{\sqrt{z-665}}=\sqrt{z-665}\)
GPT ra ta sẽ được: \(\hept{\begin{cases}x=19\\y=5\\z=1890\end{cases}}\)
Vậy \(\left(x;y;z\right)=\left(19;5;1890\right)\) sinh nhật Bác luôn đấy ạ:))
ĐKXĐ : \(x\ge1\)
PT đã cho tương đương với :
\(\sqrt{3x-2}+\sqrt{x-1}=\left[3x-2+2\sqrt{3x^2-5x+2}+x-1\right]-6\)
\(\Leftrightarrow\sqrt{3x-2}+\sqrt{x-1}=\left(\sqrt{3x-2}+\sqrt{x-1}\right)^2-6\)
Đặt \(\sqrt{3x-2}+\sqrt{x-1}=t\left(t\ge1\right)\)
Khi đó : \(t^2-t-6=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\left(loai\right)\end{cases}}\)
\(\Rightarrow\sqrt{3x-2}+\sqrt{x-1}=3\)
từ đó dễ dàng tìm được x
Làm tiếp bài của @Thanh Tùng DZ
Thay t=3 vào cách đặt ta được \(\sqrt{3x-2}+\sqrt{x-1}=3\left(3a\right)\)
Ta có \(\left(3a\right)\Leftrightarrow4x-3+2\sqrt{3x^2-5x+2}=9\)
\(\Leftrightarrow\sqrt{3x^2-5x+2}=6-2x\)
\(\Leftrightarrow\hept{\begin{cases}6-2x\ge0\\3x^2-5x+2=36-24x+4x^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le3\\x=2;x=17\end{cases}\Leftrightarrow x=2}\)
ĐK : \(x\ge3;y\ge1;z\ge665\)
\(\dfrac{16}{\sqrt{x-3}}+\dfrac{4}{\sqrt{y-1}}+\dfrac{1225}{\sqrt{z-665}}=82-\sqrt{x-3}-\sqrt{y-1}-\sqrt{z-665}\)
\(\Leftrightarrow\left(\dfrac{16}{\sqrt{x-3}}+\sqrt{x-3}\right)+\left(\dfrac{4}{\sqrt{y-1}}+\sqrt{y-1}\right)+\left(\dfrac{1225}{\sqrt{z-665}}+\sqrt{z-665}\right)=82\)
Theo BĐT Cô Si cho các số dương ta có :
\(\left\{{}\begin{matrix}\dfrac{16}{\sqrt{x-3}}+\sqrt{x-3}\ge2\sqrt{\dfrac{16\sqrt{x-3}}{\sqrt{x-3}}}=2\sqrt{16}=8\\\dfrac{4}{\sqrt{y-1}}+\sqrt{y-1}\ge2\sqrt{\dfrac{4\sqrt{y-1}}{\sqrt{y-1}}}=2\sqrt{4}=4\\\dfrac{1225}{\sqrt{z-665}}+\sqrt{z-665}\ge2\sqrt{\dfrac{1225\sqrt{z-665}}{\sqrt{z-665}}}=2\sqrt{1225}=70\end{matrix}\right.\)
\(\Rightarrow\left(\dfrac{16}{\sqrt{x-3}}+\sqrt{x-3}\right)+\left(\dfrac{4}{\sqrt{y-1}}+\sqrt{y-1}\right)+\left(\dfrac{1225}{\sqrt{z-665}}+\sqrt{z-665}\right)\ge82\)
Dấu \("="\) hiển nhiên xảy ra khi :
\(\left\{{}\begin{matrix}\dfrac{16}{\sqrt{x-3}}=\sqrt{x-3}\\\dfrac{4}{\sqrt{y-1}}=\sqrt{y-1}\\\dfrac{1225}{\sqrt{z-665}}=\sqrt{z-665}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=16\\y-1=4\\z-665=1225\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=19\\y=5\\z=1890\end{matrix}\right.\)
b) \(\dfrac{16}{\sqrt{x-3}}+\dfrac{4}{\sqrt{y-1}}+\dfrac{1225}{\sqrt{z-665}}=82-\sqrt{x-3}-\sqrt{y-1}-\sqrt{z-665}\) (*)
Đk: \(\left\{{}\begin{matrix}x>3\\y>1\\z>665\end{matrix}\right.\)
(*) \(\Leftrightarrow\dfrac{16}{\sqrt{x-3}}+\dfrac{4}{\sqrt{y-1}}+\dfrac{1225}{\sqrt{z-665}}=82-\dfrac{x-3}{\sqrt{x-3}}-\dfrac{y-1}{\sqrt{y-1}}-\dfrac{z-665}{\sqrt{z-665}}\)
\(\Leftrightarrow\dfrac{16}{\sqrt{x-3}}+\dfrac{4}{\sqrt{y-1}}+\dfrac{1225}{\sqrt{z-665}}-82+\dfrac{x-3}{\sqrt{x-3}}+\dfrac{y-1}{\sqrt{y-1}}+\dfrac{z-665}{\sqrt{z-665}}=0\)
\(\Leftrightarrow\left(\dfrac{x-3}{\sqrt{x-3}}-\dfrac{8\sqrt{x-3}}{\sqrt{x-3}}+\dfrac{16}{\sqrt{x-3}}\right)+\left(\dfrac{y-1}{\sqrt{y-1}}-\dfrac{4\sqrt{y-1}}{\sqrt{y-1}}+\dfrac{4}{\sqrt{y-1}}\right)+\left(\dfrac{z-665}{\sqrt{z-665}}-\dfrac{70\sqrt{z-665}}{\sqrt{z-665}}+\dfrac{1225}{\sqrt{z-665}}\right)=0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x-3}-4\right)^2}{\sqrt{x-3}}+\dfrac{\left(\sqrt{y-1}-2\right)^2}{\sqrt{y-1}}+\dfrac{\left(\sqrt{z-665}-35\right)^2}{\sqrt{z-665}}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-3}-4=0\\\sqrt{y-1}-2=0\\\sqrt{z-665}-35=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=19\\y=5\\z=1890\end{matrix}\right.\)
Kl: x=19, y= 5, z=1890
Gọi \(\overrightarrow{1a}=\left(x;\frac{1}{x}\right);\overrightarrow{b}=\left(y;\frac{1}{y}\right);\overrightarrow{c}=\left(z;\frac{1}{z}\right)\)
Ta có:
\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}=\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|+\left|\overrightarrow{c}\right|\)
\(\ge\left|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\right|=\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)\(\ge\sqrt{1^2+\frac{9^2}{\left(x+y+z\right)^2}}\)
\(=\sqrt{1+81}=\sqrt{82}\)
Áp dụng BDT MInkopki
VT\(\ge\)\(\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)\(\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}=\sqrt{82}\)
BDT minkopki
\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}+\sqrt{e^2+f^2}\ge\sqrt{\left(a+c+e\right)^2+\left(b+d+f\right)^2}\)