Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}-\frac{\left(\sqrt{5}+1\right)^2}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}=\frac{8-2\sqrt{15}+8+2\sqrt{15}}{2}-\frac{6+2\sqrt{5}}{4}=\frac{32-6-2\sqrt{5}}{4}=\frac{26-2\sqrt{5}}{4}=\frac{14-\sqrt{5}}{2}\) \(\left(\frac{9-2\sqrt{14}}{\sqrt{7}-\sqrt{2}}\right)^2-\left(\frac{9+2\sqrt{14}}{\sqrt{7}-\sqrt{2}}\right)^2=\left(\frac{9-2\sqrt{14}-9-2\sqrt{14}}{\sqrt{7}-\sqrt{2}}\right)\left(\frac{9-2\sqrt{14}+9+2\sqrt{14}}{\sqrt{7}-\sqrt{2}}\right)=\frac{-72\sqrt{14}}{\sqrt{7}-\sqrt{2}}\)
\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(-\sqrt{7}-\sqrt{5}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\frac{\sqrt{5}-\sqrt{7}}{\sqrt{7}+\sqrt{5}}=\frac{\left(\sqrt{5}-\sqrt{7}\right)\left(\sqrt{5}+\sqrt{7}\right)}{\left(\sqrt{7}+\sqrt{5}\right)^2}=\frac{2}{12+2\sqrt{35}}\)
\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+3\right)}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{8-2\sqrt{15}}{2}+\frac{8+2\sqrt{15}}{2}-\frac{\left(\sqrt{5}+1\right)^2}{4}=8-\frac{6+2\sqrt{5}}{4}=\frac{26-2\sqrt{5}}{4}\)
\(\frac{2}{\sqrt{7}-5}-\frac{2}{\sqrt{7}+5}=\frac{2\sqrt{7}+10}{\left(\sqrt{7}-5\right)\left(\sqrt{7}+5\right)}-\frac{2\sqrt{7}-10}{\left(\sqrt{7}-5\right)\left(\sqrt{7}+5\right)}=\frac{20}{7-25}=\frac{20}{-18}=\frac{10}{-9}\)
\(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}=\frac{\left(\sqrt{7}+\sqrt{5}\right)^2+\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}=\frac{12+2\sqrt{35}+12-2\sqrt{35}}{2}=\frac{24}{2}=12\)
\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right)\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right)\frac{1}{\sqrt{7}-\sqrt{5}}=\frac{\left(\sqrt{7}+\sqrt{5}\right)}{\sqrt{5}-\sqrt{7}}=\frac{\left(\sqrt{7}+\sqrt{5}\right)^2}{\left(\sqrt{5}-\sqrt{7}\right)\left(\sqrt{5}+\sqrt{7}\right)}=\frac{12+2\sqrt{35}}{-2}=-6-\sqrt{35}\)
\(\frac{3}{\sqrt{5}-2}+\frac{2}{\sqrt{5}+3}-\frac{1}{\sqrt{5}+4}=\frac{3\left(\sqrt{5}+2\right)}{5-4}+\frac{2\left(\sqrt{5}-3\right)}{5-9}-\frac{\sqrt{5}-4}{5-16}\)
\(=3\sqrt{5}+6+\frac{2\sqrt{5}-6}{-4}+\frac{4-\sqrt{5}}{-11}=\frac{66\sqrt{5}+132}{22}+\frac{33-11\sqrt{5}}{22}+\frac{2\sqrt{5}-8}{22}\)
\(=\frac{66\sqrt{5}-11\sqrt{5}+2\sqrt{5}+132+33-8}{22}=\frac{57\sqrt{5}+157}{22}\)
a, = \(\frac{\sqrt{7}-5}{2}-\frac{2\left(3-\sqrt{7}\right)}{4}+\frac{6\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\frac{5\left(4-\sqrt{7}\right)}{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}\)
Bài 1: Thực hiện phép tính
a) Ta có: \(\frac{3+\sqrt{7}}{3-\sqrt{7}}-\frac{3-\sqrt{7}}{3+\sqrt{7}}\)
\(=\frac{\left(3+\sqrt{7}\right)^2}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}-\frac{\left(3-\sqrt{7}\right)^2}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)
\(=\frac{9+6\sqrt{7}+7-\left(9-6\sqrt{7}+7\right)}{9-7}\)
\(=\frac{16+6\sqrt{7}-16+6\sqrt{7}}{2}\)
\(=\frac{12\sqrt{7}}{2}=6\sqrt{7}\)
b)Sửa đề: \(\left(\frac{\sqrt{2}+5}{\sqrt{2}-5}-\frac{\sqrt{2}-5}{\sqrt{2}+5}\right):\frac{\sqrt{2}}{23}\)
Ta có: \(\left(\frac{\sqrt{2}+5}{\sqrt{2}-5}-\frac{\sqrt{2}-5}{\sqrt{2}+5}\right):\frac{\sqrt{2}}{23}\)
\(=\left(\frac{\left(\sqrt{2}+5\right)^2}{\left(\sqrt{2}-5\right)\left(\sqrt{2}+5\right)}-\frac{\left(\sqrt{2}-5\right)^2}{\left(\sqrt{2}+5\right)\left(\sqrt{2}-5\right)}\right)\cdot\frac{23}{\sqrt{2}}\)
\(=\left(\frac{27+10\sqrt{2}-\left(27-10\sqrt{2}\right)}{2-25}\right)\cdot\frac{23}{\sqrt{2}}\)
\(=\frac{27+10\sqrt{2}-27+10\sqrt{2}}{-23}\cdot\frac{23}{\sqrt{2}}\)
\(=\frac{20\sqrt{2}}{-\sqrt{2}}=-20\)
c) Ta có: \(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}+\sqrt{5}\)
\(=\sqrt{25\cdot\frac{1}{5}}+\frac{1}{2}\cdot2\sqrt{5}+\sqrt{5}\)
\(=\sqrt{5}+\sqrt{5}+\sqrt{5}\)
\(=3\sqrt{5}\)
d) Ta có: \(\sqrt{\frac{1}{2}}+\sqrt{4.5}+12.5\)
\(=\frac{1}{\sqrt{2}}+\frac{3}{\sqrt{2}}+12.5\)
\(=2\sqrt{2}+12.5\)
e) Ta có: \(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\sqrt{54}+5\sqrt{1\frac{1}{3}}\)
\(=\frac{1}{2}\cdot4\sqrt{3}-2\cdot5\sqrt{3}-3\sqrt{6}+5\cdot\sqrt{\frac{4}{3}}\)
\(=2\sqrt{3}-10\sqrt{3}-3\sqrt{6}+\frac{10}{\sqrt{3}}\)
\(=-8\sqrt{3}+\frac{10}{\sqrt{3}}-3\sqrt{6}\)
\(=\frac{-24+10}{\sqrt{3}}-\frac{9\sqrt{2}}{\sqrt{3}}\)
\(=\frac{-14-9\sqrt{2}}{\sqrt{3}}\)