\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2017

Nhận xét : \(x=\frac{1}{3}\) là 1 nghiệm của phương trình

\(\sqrt{\frac{42}{5-x}}\) đồng biến với " x tăng thì 5 - c giảm -> \(\sqrt{\frac{42}{5-x}}\) tăng 

Tương đương \(\Rightarrow\sqrt{\frac{60}{7-x}}\) đồng biến với x

VT đồng biến với x, VP là hằng số. Nếu phương trình có nghiệm thì kết quả duy nhất là : \(\frac{1}{3}\)

Vậy kết quả của Phương trình có nghiệm là \(\frac{1}{3}\)

P/s: Em ko chắc đâu ạ. Mới lớp 6 thui :v

24 tháng 8 2017

\(x=\frac{1}{3}\) có thể ghi tất cả phép tính ra và thay dấu = thành dấu - trên may tinh casio rồi nhấn shift tiếp theo nhấn calc rồi chọn số bất kì rồi nhấn bằng đợi một lát rồi nhấn asn rồi nhấn =

27 tháng 8 2017

copy mà ko hiểu thì copy làm gì

#Lần sau copy nhớ ghi nguồn nếu tôn trọng công sức người khác

\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)

\(\Leftrightarrow\sqrt{\frac{42}{5-x}}-\sqrt{\frac{126}{14}}+\sqrt{\frac{60}{7-x}}-\sqrt{\frac{45}{5}}=0\)

\(\Leftrightarrow\frac{\frac{42}{5-x}-\frac{126}{14}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{60}{7-x}-\frac{45}{5}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}=0\)

\(\Leftrightarrow\frac{\frac{-3\left(3x-1\right)}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{-3\left(3x-1\right)}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}=0\)

\(\Leftrightarrow-3\left(3x-1\right)\left(\frac{\frac{1}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{1}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}\right)=0\)

Thấy: \(\frac{\frac{1}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{1}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}>0\)

\(\Rightarrow3x-1=0\Rightarrow x=\frac{1}{3}\)

27 tháng 8 2017

ĐK: \(x< 5\)

Nhận xét: \(x=\frac{1}{3}\) nghiệm của phương trình

\(\frac{42}{5-x}\) đồng biến với x. x tăng thì 5-x giảm -> \(\frac{42}{5-x}\) tăng

\(\Rightarrow\sqrt{\frac{42}{5-x}}\) đồng biến với x 

\(\Leftrightarrow\sqrt{\frac{60}{7-x}}\) đồng biến với x

VT đồng biến với x, VP là hằng số. Nếu Phương Trình nghiệm thì nghiệm duy nhất là:

\(\Rightarrow\)Phương Trình có nghiệm là \(\frac{1}{3}\)

16 tháng 8 2017

mọi người jup mình giải đi khó wá

1 bài thui cx đc

9 tháng 10 2019

a)= \(\left(3+\sqrt{5}\right)\left(\sqrt{\left(3-\sqrt{5}\right)^2}\right)\)=\(\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)=9-5=4\)

b)= \(\frac{2\left(3-\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}+\frac{\sqrt{2^2.7}}{2}-2\)=\(\frac{2\left(3-\sqrt{7}\right)}{9-7}+\sqrt{7}-2\)=1

c) =\(\frac{3}{3\left(\sqrt{7}-2\right)}-\frac{3}{3\left(\sqrt{7}+2\right)}\)=\(\frac{1}{\sqrt{7}-2}-\frac{1}{\sqrt{7}+2}=\frac{\sqrt{7}+2-\left(\sqrt{7}-2\right)}{\left(\sqrt{7}+2\right)\left(\sqrt{7}-2\right)}\)=\(\frac{4}{7-4}=\frac{4}{3}\)

d) =\(\left(\sqrt{3}+1\right)\sqrt{\frac{\left(14-6\sqrt{3}\right)^{ }\left(5-\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}}\)=\(\left(1+\sqrt{3}\right)\sqrt{\frac{\left(88-44\sqrt{3}\right)}{25-3}}\)=\(\left(1+\sqrt{3}\right)\sqrt{\frac{22\left(4-2\sqrt{3}\right)}{22}}\)=\(\left(1+\sqrt{3}\right)\sqrt{\left(\sqrt{3}-1\right)^2}=\left(1+\sqrt{3}\right)\left(\sqrt{3}-1\right)\)=3-1 = 2

e) = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{7\sqrt{x}-3}{x-9}+\frac{\sqrt{x}\left(3-\sqrt{x}\right)}{3-\sqrt{x}}\)\(\frac{x-4\sqrt{x}+3}{x-9}+\frac{7\sqrt{x}-3}{x-9}+\sqrt{x}\)\(\frac{x+3\sqrt{x}}{x-9}+\sqrt{x}=\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\sqrt{x}\)\(\frac{\sqrt{x}}{\sqrt{x}-3}+\sqrt{x}=\frac{x-2\sqrt{x}}{\sqrt{x}-3}\)

NV
12 tháng 10 2020

a/ Giải rồi

b/ ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)

\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\) (1)

Pt trở thành:

\(t=t^2-6\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\)

\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)

\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\left(x\le\frac{5}{3}\right)\)

\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\)

\(\Leftrightarrow...\)

NV
12 tháng 10 2020

e/ ĐKXD: \(x>0\)

\(5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\ge\sqrt{2}\)

\(\Rightarrow t^2=x+\frac{1}{4x}+1\)

Pt trở thành:

\(5t=2\left(t^2-1\right)+4\)

\(\Leftrightarrow2t^2-5t+2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=2\)

\(\Leftrightarrow2x-4\sqrt{x}+1=0\)

\(\Rightarrow\sqrt{x}=\frac{2\pm\sqrt{2}}{2}\)

\(\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\)