\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

copy mà ko hiểu thì copy làm gì

#Lần sau copy nhớ ghi nguồn nếu tôn trọng công sức người khác

\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)

\(\Leftrightarrow\sqrt{\frac{42}{5-x}}-\sqrt{\frac{126}{14}}+\sqrt{\frac{60}{7-x}}-\sqrt{\frac{45}{5}}=0\)

\(\Leftrightarrow\frac{\frac{42}{5-x}-\frac{126}{14}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{60}{7-x}-\frac{45}{5}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}=0\)

\(\Leftrightarrow\frac{\frac{-3\left(3x-1\right)}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{-3\left(3x-1\right)}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}=0\)

\(\Leftrightarrow-3\left(3x-1\right)\left(\frac{\frac{1}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{1}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}\right)=0\)

Thấy: \(\frac{\frac{1}{x-5}}{\sqrt{\frac{42}{5-x}}+\sqrt{\frac{126}{14}}}+\frac{\frac{1}{x-7}}{\sqrt{\frac{60}{7-x}}+\sqrt{\frac{45}{5}}}>0\)

\(\Rightarrow3x-1=0\Rightarrow x=\frac{1}{3}\)

27 tháng 8 2017

ĐK: \(x< 5\)

Nhận xét: \(x=\frac{1}{3}\) nghiệm của phương trình

\(\frac{42}{5-x}\) đồng biến với x. x tăng thì 5-x giảm -> \(\frac{42}{5-x}\) tăng

\(\Rightarrow\sqrt{\frac{42}{5-x}}\) đồng biến với x 

\(\Leftrightarrow\sqrt{\frac{60}{7-x}}\) đồng biến với x

VT đồng biến với x, VP là hằng số. Nếu Phương Trình nghiệm thì nghiệm duy nhất là:

\(\Rightarrow\)Phương Trình có nghiệm là \(\frac{1}{3}\)

7 tháng 6 2017

khó quá

15 tháng 9 2020

Phương pháp giải như sau :  

Trước hết phải có ĐKXĐ là  \(x>1\)

Biến đổi phương trình về dạng \(\sqrt{\frac{5\sqrt{2}+7}{x+1}}+4\left(x+1\right)=3\left(\sqrt{2}+1\right)\)        (1)

Áp dụng bất đẳng thức AM-GM Côsi cho 3 số ta có

\(VT=\sqrt{\frac{5\sqrt{2}+7}{x+1}}+4\left(x+1\right)=\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}+\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}+1}+4\left(x+1\right)\) \(\ge3\sqrt[3]{\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}\cdot\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}\cdot4\left(x+1\right)}\)\(=3\sqrt[3]{5\sqrt{2}+7}=3\sqrt[3]{\left(\sqrt{2}+1\right)^3}=3\left(\sqrt{2}+1\right)=VP\)nên

(1)   \(\Leftrightarrow\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}=4\left(x+1\right)\Leftrightarrow x=\frac{\sqrt{2}-3}{4}\)(tm)

Kết luận:...        (Đây chỉ là hướng giải các bạn tự trình bày nhé, chúc học tốt)

14 tháng 10 2019

j vậy bn ?

24 tháng 8 2017

Nhận xét : \(x=\frac{1}{3}\) là 1 nghiệm của phương trình

\(\sqrt{\frac{42}{5-x}}\) đồng biến với " x tăng thì 5 - c giảm -> \(\sqrt{\frac{42}{5-x}}\) tăng 

Tương đương \(\Rightarrow\sqrt{\frac{60}{7-x}}\) đồng biến với x

VT đồng biến với x, VP là hằng số. Nếu phương trình có nghiệm thì kết quả duy nhất là : \(\frac{1}{3}\)

Vậy kết quả của Phương trình có nghiệm là \(\frac{1}{3}\)

P/s: Em ko chắc đâu ạ. Mới lớp 6 thui :v

24 tháng 8 2017

\(x=\frac{1}{3}\) có thể ghi tất cả phép tính ra và thay dấu = thành dấu - trên may tinh casio rồi nhấn shift tiếp theo nhấn calc rồi chọn số bất kì rồi nhấn bằng đợi một lát rồi nhấn asn rồi nhấn =

13 tháng 10 2019

dk \(x+9\ge0;x\ge0;x+1>0< =>x\ge0;\)

\(\sqrt{x+9}-\sqrt{x}=\frac{2\sqrt{2}}{\sqrt{x+1}}< =>\frac{9}{\sqrt{x+9}+\sqrt{x}}=\frac{2\sqrt{2}}{\sqrt{x+1}}\)<=> \(9\sqrt{x+1}=2\sqrt{2}\left(\sqrt{x+9}+\sqrt{x}\right)< =>\)\(81\left(x+1\right)=16x+72+16\sqrt{x\left(x+9\right)}\)

<=> \(65x+9=16\sqrt{x\left(x+9\right)}\)<=> 4225x2+1170x+81= 256x2+144x <=> 3969x2+1026x+81=0 (vô nghiệm)

16 tháng 8 2017

mọi người jup mình giải đi khó wá

1 bài thui cx đc

20 tháng 10 2017

Trần Hữu Ngọc Minh xem tôi làm có đúng ko?

Giải:

a, \(\sqrt{2}.x-\sqrt{50}=0\)

\(\Leftrightarrow\sqrt{2}.x=\sqrt{50}\Leftrightarrow\sqrt{2}.x=\sqrt{25.2}\)

\(\Leftrightarrow\sqrt{2}.x=\sqrt{25}.\sqrt{2}\Leftrightarrow\sqrt{2}.x=5\sqrt{2}\)

\(\Leftrightarrow x=5\)

c, \(\sqrt{3}.x^2-\sqrt{12}=0\)

\(\Leftrightarrow\sqrt{3}.x^2=\sqrt{12}\)

\(\Leftrightarrow\sqrt{3}.x^2=\sqrt{4.3}\)

\(\Leftrightarrow\sqrt{3}.x^2=\sqrt{4}.\sqrt{3}\)

\(\Leftrightarrow\sqrt{3}.x^2=2\sqrt{3}\)

\(\Leftrightarrow x^2=2\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

d, \(\frac{x^2}{\sqrt{5}}-\sqrt{20}=0\)

\(\Leftrightarrow\frac{x^2}{\sqrt{5}}=\sqrt{20}\)

\(\Leftrightarrow x^2=\sqrt{5}.\sqrt{20}\)

\(\Leftrightarrow x^2=\sqrt{100}\)

\(\Leftrightarrow x=\pm10\)

20 tháng 10 2017

giỏi đấy

12 tháng 10 2018

ĐKXĐ x>0

Chia cả 2 vế của pt cho \(\sqrt{x}\ne0\),ta được

\(12+\sqrt{\frac{x-1}{x}}=\frac{2}{x}+\sqrt{\frac{169x-65}{x}}\)

\(\Rightarrow12-\frac{2}{x}+\sqrt{1-\frac{1}{x}}=\sqrt{65\left(1-\frac{1}{x}\right)+104}\)(2)

Đặt \(\sqrt{1-\frac{1}{x}}=a\)(\(a\ge0\)),khi đó pt (1) trở thành

\(2a^2+10+a=\sqrt{65a^2+104}\)

\(\Leftrightarrow\left(2a^2+a+10\right)^2=65a^2+104\)

\(\Leftrightarrow\left(a-1\right)^2\left(a^2+3a-1\right)=0\)

Đến đây bn tự giải tiếp nhé