\(\sqrt{a+b+c+2\sqrt{ac+bc}}+\sqrt{a+b+c-2\sqrt{ac+bc}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2018

\(\sqrt{a+b+c+2\sqrt{ac+bc}}+\sqrt{a+b+c-2\sqrt{ac+bc}}\)

\(=\)\(\sqrt{\left(\sqrt{a+b}\right)^2+2\sqrt{a+b}\sqrt{c}+\left(\sqrt{c}\right)^2}+\sqrt{\left(\sqrt{a+b}\right)^2-2\sqrt{a+b}\sqrt{c}+\left(\sqrt{c}\right)^2}\)

\(=\)\(\sqrt{\left(a+b+c\right)^2}+\sqrt{\left(a+b-c\right)^2}\)

\(=\)\(\left|a+b+c\right|+\left|a+b-c\right|\)

Đến đây e ko bít làm tiếp -_- 

Chúc chị học tốt ~ 

NV
20 tháng 6 2020

Đặt vế trái là P và \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=4\)

Ta cần chứng minh: \(P=\frac{1}{xy+2yz+zx}+\frac{1}{xy+yz+2zx}+\frac{1}{2xy+yz+zx}\le\frac{1}{xyz}\)

\(P=\frac{1}{xy+yz+yz+zx}+\frac{1}{xy+yz+zx+zx}+\frac{1}{xy+xy+yz+zx}\)

\(P\le\frac{1}{16}\left(\frac{1}{xy}+\frac{2}{yz}+\frac{1}{zx}+\frac{1}{xy}+\frac{1}{yz}+\frac{2}{zx}+\frac{2}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(P\le\frac{1}{4}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\frac{1}{4}\left(\frac{x+y+z}{xyz}\right)=\frac{1}{4}.\frac{4}{xyz}=\frac{1}{xyz}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=\frac{4}{3}\) hay \(a=b=c=\frac{16}{9}\)

22 tháng 6 2015

\(t^2=a+b+c+2\sqrt{ac+bc}+a+b+c-2\sqrt{ac+bc}+2\sqrt{\left(a+b+c+2\sqrt{ac+bc}\right)\left(a+b+c-2\sqrt{ac+bc}\right)}\)

\(T^2=2a+2b+2c+2\sqrt{a^2+b^2+c^2+2ab+2bc+2ac-4ac-4bc}\)

\(T^2=2a+2b+2c+\sqrt{a^2+b^2+c^2-2ac-2bc+2ab}\)

\(T^2=2a+2b+2c+\sqrt{\left(a+b-c\right)^2}\)

\(T^2=2a+2b+2c+a+b-c\) ( vì a,b,c> 0 )

\(T^2=3a+3b+c\Leftrightarrow t=\sqrt{3a+3b+c}\)

 

15 tháng 11 2017

ta có : \(P=\frac{\sqrt{bc}}{a+2\sqrt{bc}}+\frac{\sqrt{ac}}{b+2\sqrt{ac}}+\frac{\sqrt{ab}}{c+2\sqrt{ab}}\le\frac{\frac{1}{2}\left(b+c\right)}{a+b+c}+\frac{\frac{1}{2}\left(a+c\right)}{a+b+c}+\frac{\frac{1}{2}\left(a+b\right)}{a+b+c}\)

\(\Rightarrow P\le\frac{a+b+c}{a+b+c}=1\)

=> GTLN của P là 1 khi a=b=c

AH
Akai Haruma
Giáo viên
31 tháng 5 2019

Lời giải:

\(Q=\sqrt{a+b+c+2\sqrt{ab+bc}}+\sqrt{a+b+c+2\sqrt{ac+bc}}\)

\(=\sqrt{(a+c)+b+2\sqrt{b(a+c)}}+\sqrt{(a+b)+c+2\sqrt{c(a+b)}}\)

\(=\sqrt{(\sqrt{a+c}+\sqrt{b})^2}+\sqrt{(\sqrt{a+b}+\sqrt{c})^2}\)

\(=\sqrt{a+c}+\sqrt{b}+\sqrt{a+b}+\sqrt{c}\)

17 tháng 8 2017

a)Áp dụng BĐT AM-GM ta có

\(\frac{ab\sqrt{ab}}{a+b}\le\frac{ab\sqrt{ab}}{2\sqrt{ab}}=\frac{ab}{2}\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\frac{bc\sqrt{bc}}{b+c}\le\frac{bc}{2};\frac{ac\sqrt{ac}}{a+c}\le\frac{ac}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT=Σ\frac{ab\sqrt{ab}}{a+b}\le\frac{ab+bc+ca}{2}=VP\)

Khi \(a=b=c\)

b)Áp dụng tiếp AM-GM:

\(b\sqrt{a-1}\le\frac{b\left(a-1+1\right)}{2}=\frac{ab}{2}\)

\(a\sqrt{b-1}\le\frac{a\left(b-1+1\right)}{2}=\frac{ab}{2}\)

Cộng theo vế 2 BĐT trên ta có:

\(VT=b\sqrt{a-1}+a\sqrt{b-1}\le ab=VP\)

Khi \(a=b=1\)

22 tháng 4 2020

\(VT=\frac{1}{\sqrt{abc}}\Sigma_{cyc}\left(\frac{1}{\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{2}{\sqrt{c}}}\right)\le\frac{1}{\sqrt{abc}}\Sigma_{cyc}\left(\frac{\sqrt{a}+\sqrt{b}+2\sqrt{c}}{16}\right)=\frac{1}{\sqrt{abc}}\)

Dấu "=" xay ra khi \(a=b=c=\frac{16}{9}\)