Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz ta có:
\(ac+bd\le\sqrt{a^2+b^2}\cdot\sqrt{c^2+d^2}\)
Mà \(\left(a+c\right)^2+\left(b+d\right)^2=a^2+b^2+2\left(ac+bd\right)+c^2+d^2\)
\(\le\left(a^2+b^2\right)+2\sqrt{a^2+b^2}\cdot\sqrt{c^2+d^2}+c^2+d^2\)
\(\Rightarrow\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)
Còn cách bình phương nó lên nữa nhưng dễ lẫn nên nếu chưa học Caushy-Schwarz thì nhắn nhé - NOTE: đây còn là BĐT Mincopski tìm cách c/m nó trên google cũng đầy
\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{18-8\sqrt{2}}}}}-\sqrt{3}\)\(=\sqrt{6+2.1,4.\sqrt{3-\sqrt{1,4+2.1,7+\sqrt{18-8.1,4\text{}}}}}-1,7\)
\(=\sqrt{6+2,8\sqrt{3-\sqrt{1,4+3,4+\sqrt{18-11,2}}}}-1,7\)
\(=\sqrt{8,8\sqrt{3-\sqrt{4,8+\sqrt{6,8}}}}-1,7\)
\(=\sqrt{8,8\sqrt{3-\sqrt{4,8+2,6}}}-1,7\)
\(=\sqrt{8,8\sqrt{3-\sqrt{7,4}}}-1,7\)
\(=\sqrt{8,8\sqrt{3-2,7}}-1,7\)
\(=\sqrt{88\sqrt{0,3}}-1,7\)
\(=\sqrt{88.0,54}-1,7\)
\(=\sqrt{47,52}-1,7\)
\(=6,9-1,7\)
\(=5,2\)
2,Mệt với câu 1 rồi nên câu 2 và câu 3 chịu
hình như sai rồi bạn ơi, lúc học thì thầy mình giải ra kết quả =1 và ko tính căn ra như thế
CM cái sau:
Ta có: \(a+\frac{1}{a}=\frac{a}{1}+\frac{1}{a}\ge2\sqrt{\frac{a}{1}.\frac{1}{a}}=2.1=2\) (bất đẳng thức Cauchy)
Chứng minh:
\(\left(a-b\right)^2\ge0\left(\forall a,b\right)\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
(áp dụng vào cái trên)
Dấu "=" xảy ra khi:
\(a=\frac{1}{a}\Leftrightarrow a^2=1\Rightarrow a=1\left(a>0\right)\)
a/ \(A=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left[\left(x+1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-3\right)\right]\)
\(=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)
Suy ra Min A = -36 <=> \(x^2-5x=0\Leftrightarrow x\left(x-5\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b/ \(B=19-6x-9x^2=-9\left(x-\frac{1}{3}\right)^2+20\le20\)
Suy ra Min B = 20 <=> x = 1/3
a) \(A=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
\(=\left[\left(x+1\right)\left(x-6\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)
\(\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\)
Vì \(\left(x^2-5x\right)^2\ge0\)
=> \(\left(x^2-5x\right)^2-36\ge-36\)
Vậy GTNN của A là -36 khi \(x^2-5x=0\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b) \(B=19-6x-9x^2=-\left(9x^2+6x+1\right)+20=-\left(3x+1\right)^2+20\)
Vì \(-\left(3x+1\right)^2\le0\)
=> \(-\left(3x+1\right)+20\le20\)
Vậy GTLN của B là 20 khi \(x=-\frac{1}{3}\)
Ta có :
\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)
\(\Leftrightarrow\) \(\dfrac{1}{1+a^2}-\dfrac{1}{1+ab}+\dfrac{1}{1+b^2}-\dfrac{1}{1+ab}\ge0\)
\(\Leftrightarrow\) \(\dfrac{1+ab-1-a^2}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{1+ab-1-b^2}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\) \(\dfrac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow a\left(b-a\right)\left(1+b^2\right)+b\left(a-b\right)\left(1+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left[-a\left(1+b^2\right)+b\left(1+a^2\right)\right]\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(-a-ab^2+b+a^2b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left[ab\left(a-b\right)-\left(a-b\right)\right]\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a-b\right)\left(ab-1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(ab-1\right)\ge0\) (*)
Vì \(a.b=1\Rightarrow ab-1=0,\left(a-b\right)^2\ge0\)
Do đó (*) đúng . Vậy \(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\left(đpcm\right)\)
\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)
\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)
\(=2a^2.2b^2-4a^2b^2=0\)
\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)
\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)
\(=\left[4-11x\right]^2\)
\(=16-88x+121x^2\)
chúc bn học tốt
\(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{2}\ge\frac{\left(a+b\right)^3}{8}\)
\(\Leftrightarrow\frac{a^2-ab+b^2}{2}\ge\frac{\left(a+b\right)^2}{8}\)
\(\Leftrightarrow\frac{a^2-ab+b^2}{2}\ge\frac{a^2+2ab+b^2}{8}\)
\(\Leftrightarrow\frac{a^2-ab+b^2}{2}-\frac{a^2+2ab+b^2}{8}\ge\)
\(\Leftrightarrow\frac{4a^2-4ab+4b^2-a^2-2ab-b^2}{8}\ge0\)
\(\Leftrightarrow\frac{3a^2-6ab+3b^2}{8}\ge0\)
\(\Leftrightarrow\frac{3\left(a-b\right)^2}{8}\ge0\) (luôn đúng)
Vậy \(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)
a)\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
Đặt \(t=x^2+3x\) thì biểu thức có dạng \(t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(x^2+3x+1\right)^2\)
b)\(\left(x^2-x+2\right)^2+4x^2-4x-4=\left(x^2-x+2\right)^2+4\left(x^2-x-1\right)\)
Đặt \(k=x^2-x+2\) thì biểu thức có dạng
k2+4(k-3)=k2+4k-12=k2-2k+6k-12=k(k-2)+6(k-2)=(k-2)(k+6)=(x2-x)(x2-x+8)=(x-1)x(x2-x+8)
c)làm tương tự câu a
Đặt \(A=\sqrt{a^6\cdot\left(2-a\right)}\)
Để A có nghĩa \(\Leftrightarrow a^6\cdot\left(2-a\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}a^6\ge0\\2-a\ge0\end{cases}\Leftrightarrow2-a\ge0\Leftrightarrow a\le2}\) (1)
Mà theo để bài \(a\ge2\) (2)
Từ (1) và (2) => \(a=2\)
Vậy \(A=\sqrt{a^6\cdot\left(2-a\right)}=0\Leftrightarrow a=2\)