Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Bạn đã post 1 lần
Bài 2:
\(C=\sqrt{(x-3)-2\sqrt{x-3}+1}-\sqrt{(x-3)-4\sqrt{x-3}+4}\)
\(=\sqrt{(\sqrt{x-3}-1)^2}-\sqrt{(\sqrt{x-3}-2)^2}\)
\(=|\sqrt{x-3}-1|-|\sqrt{x-3}-2|\)
Áp dụng BĐT dạng $|a|-|b|\leq |a-b|(*)$ thì:
$C\leq |\sqrt{x-3}-1-(\sqrt{x-3}-2)|$ hay $C\leq 1$
Vậy $C_{\max}=1$
Mặt khác, vẫn áp dụng BĐT $(*)$:
\(|\sqrt{x-3}-1|=|(\sqrt{x-3}-2-(-1)|\geq |\sqrt{x-3}-2|-|-1|\)
\(=|\sqrt{x-3}-2|-1\Rightarrow C\geq -1\)
Vậy $C_{\min}=-1$
Câu a, bạn coi lại đề xem $a^2=6-3\sqrt{3}$ hay $a=6-3\sqrt{3}$???
b.
\(B=\frac{\sqrt{(x-2)+(x+2)+2\sqrt{(x-2)(x+2)}}}{\sqrt{x^2-4}+x+2}\)
\(=\frac{\sqrt{(\sqrt{x-2}+\sqrt{x+2})^2}}{\sqrt{x^2-4}+x+2}=\frac{\sqrt{x-2}+\sqrt{x+2}}{\sqrt{x^2-4}+x+2}=\frac{\sqrt{x-2}+\sqrt{x+2}}{\sqrt{x+2}(\sqrt{x-2}+\sqrt{x+2})}=\frac{1}{\sqrt{x+2}}\)
\(=\frac{1}{\sqrt{3+\sqrt{5}}}=\frac{\sqrt{2}}{\sqrt{6+2\sqrt{5}}}=\frac{\sqrt{2}}{\sqrt{(\sqrt{5}+1)^2}}=\frac{\sqrt{2}}{\sqrt{5}+1}\)
Ta có: \(a+b\sqrt{3}=\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
\(\Leftrightarrow a+b\sqrt{3}=2-\sqrt{3}-2-\sqrt{3}\)
\(\Leftrightarrow a+b\sqrt{3}=-2\sqrt{3}\)
\(\Leftrightarrow a=0;b=-2\)
T=a+b=0+(-2)=-2
\(S=\sqrt{\left(\sqrt{3}\right)^2-2\cdot2\sqrt{3}+2^2}-\sqrt{\left(\sqrt{3}\right)^2+2\cdot2\cdot\sqrt{3}+2^2}\)
\(S=\sqrt{\left(\sqrt{3}-2\right)^2}-\sqrt{\left(\sqrt{3}+2\right)^2}\)
\(S=\left|\sqrt{3}-2\right|-\left|\sqrt{3}+2\right|=-\sqrt{3}+2-\sqrt{3}-2=0+\left(-2\right)\sqrt{3}\)
\(a=0,b=-2\)
\(T=0+-2=-2\)
ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)
Ta có: \(P=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\)
\(=\dfrac{a+2\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}.\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}.\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)
\(=a-b\)
Thay a = 2√3 và b = √3 vào P, ta được:
P = 2√3 - √3 = √3
Vậy...
a) Ta có: \(P=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\cdot\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\)
\(=\dfrac{a-2\sqrt{ab}+b+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\cdot\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\dfrac{a+2\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\cdot\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}\cdot\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)
\(=a-b\)
b) Thay \(a=2\sqrt{3}\) và \(b=\sqrt{3}\) vào biểu thức P=a-b, ta được:
\(P=2\sqrt{3}-\sqrt{3}=\sqrt{3}\)
Vậy: Khi \(a=2\sqrt{3}\) và \(b=\sqrt{3}\) thì \(P=\sqrt{3}\)
a: \(P=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)=a-b\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\b>0\\a\ne b\end{matrix}\right.\)
P = \(\dfrac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}.\left[\left(\dfrac{a+\sqrt{ab}+b-3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right):\dfrac{a-b}{a+\sqrt{ab}+b}\right]\)= \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}.\left[\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}.\dfrac{a+\sqrt{ab}+b}{a-b}\right]\)
= \(\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}.\dfrac{\sqrt{a}-\sqrt{b}}{a-b}\)
= \(\dfrac{1}{a-\sqrt{ab}+b}\)
b) có a = 16 và b = 4 (thoả mãn ĐKXĐ)
Thay a = 16, b =4 vào P có:
P = \(\dfrac{1}{16-\sqrt{16.4}+4}\)= \(\dfrac{1}{12}\)
Vậy tại a =16, b = 4 thì P = \(\dfrac{1}{12}\)
a: \(=\dfrac{2\left(\sqrt{2}+1\right)}{2-1}-\sqrt{\dfrac{3}{4}:\dfrac{3}{2}}+2\sqrt{2}\)
\(=2\sqrt{2}+2+2\sqrt{2}-\sqrt{\dfrac{1}{2}}\)
\(=4\sqrt{2}+2-\dfrac{\sqrt{2}}{2}=\dfrac{7}{2}\sqrt{2}+2\)
b: \(B=\left|3x\right|+x+\sqrt{x}\)
\(=3x+x+\sqrt{x}=4x+\sqrt{x}\)
Ta có: \(b=\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
\(=\dfrac{2\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}{3\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}\)
\(=\dfrac{2}{3}\)
Ta có: \(a=\sqrt{4+2\sqrt{2}}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{4-2-\sqrt{2}}\)
\(=\sqrt{2\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}\)
=2
Thay a=2 và \(b=\dfrac{2}{3}\) vào M, ta được:
\(M=\dfrac{1+2\cdot\dfrac{2}{3}}{2+\dfrac{2}{3}}-\dfrac{1-2\cdot\dfrac{2}{3}}{2-\dfrac{2}{3}}\)
\(=\dfrac{7}{8}+\dfrac{1}{4}\)
\(=\dfrac{7}{8}+\dfrac{2}{8}=\dfrac{9}{8}\)
\(\dfrac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}=\dfrac{9\sqrt{5}+9\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\dfrac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)
b.
\(=\sqrt{3-\sqrt{5}}.\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}+\sqrt{3+\sqrt{5}}.\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)
\(=\sqrt{3-\sqrt{5}}.\sqrt{9-5}+\sqrt{3+\sqrt{5}}.\sqrt{9-5}\)
\(=\sqrt{12-4\sqrt{5}}+\sqrt{12+4\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{10}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{10}+\sqrt{2}\right)^2}\)
\(=\sqrt{10}-\sqrt{2}+\sqrt{10}+\sqrt{2}=2\sqrt{10}\)
c.
\(\dfrac{a-\sqrt{b}}{\sqrt{b}}:\dfrac{\sqrt{b}}{a+\sqrt{b}}=\dfrac{\left(a-\sqrt{b}\right)\left(a+\sqrt{b}\right)}{\sqrt{b}.\sqrt{b}}=\dfrac{a^2-b}{b}\)