K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2018

truoc cai can trong can thu 2 la 4 dung ko?

16 tháng 10 2019

\(đk:x\ge\frac{-3}{2}\)

\(\sqrt{8x+13+4\sqrt{2x+3}}+\sqrt{2x+7-4\sqrt{2x+3}}=9\)

\(\Leftrightarrow\sqrt{4\left(2x+3\right)+4\sqrt{2x+3}+1}+\sqrt{2x+3-4\sqrt{2x+3}+4}=9\)

\(\Leftrightarrow\sqrt{\left(2\sqrt{2x+3}+1\right)^2}+\sqrt{\left(\sqrt{2x+3}+2\right)^2}=9\)

\(\Leftrightarrow|2\sqrt{2x+3}+1|+|\sqrt{2x+3}+2|=9\Leftrightarrow3\sqrt{2x+3}=6\Leftrightarrow\sqrt{2x+3}=2\Leftrightarrow2x+3=4\)

\(\Leftrightarrow x=\frac{1}{2}\left(\text{thỏa mãn}\right)\)

17 tháng 9 2021

\(1.\sqrt{16-8x+x^2}=4-x\)

\(\sqrt{\left(4-x\right)^2}=4-x\)

\(4-x-4+x=0\)

= 0 phương trình vô nghiệm.

\(2.\sqrt{4x^2-12x+9}=2x-3\)

\(\)\(\sqrt{\left(2x-3\right)^2}=2x-3\)

\(2x-3-2x+3=0\)

= 0 phương trình vô nghiệm.

a: Ta có: \(\sqrt{16-8x+x^2}=4-x\)

\(\Leftrightarrow\left|4-x\right|=4-x\)

hay \(x\le4\)

b: Ta có: \(\sqrt{4x^2-12x+9}=2x-3\)

\(\Leftrightarrow\left|2x-3\right|=2x-3\)

hay \(x\ge\dfrac{3}{2}\)

25 tháng 7 2018

đkxđ: x≥\(-\dfrac{1}{2}\)

\(\sqrt{18x+9}-\sqrt{8x+4}+\dfrac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow3\sqrt{2x+1}-2\sqrt{2x+1}+\dfrac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow\left(3-2+\dfrac{1}{3}\right)\sqrt{2x+1}=4\)

\(\Leftrightarrow\dfrac{4}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow\sqrt{2x+1}=3\Leftrightarrow2x+1=9\Leftrightarrow x=4\)

vậy x = 4

25 tháng 7 2018

Bình phương 2 vế ,ta có:

\(26x+13+\dfrac{1}{9}\left(2x+1\right)-2\sqrt{9.4\left(2x+1\right)^2}-2.\dfrac{1}{3}\sqrt{4\left(2x+1\right)^2}+2.\dfrac{1}{3}\sqrt{9\left(2x+1\right)^2}=16\) \(\dfrac{236}{9}x+\dfrac{118}{9}-2.6.\left(2x+1\right)-\dfrac{2}{3}.2.\left(2x+1\right)+\dfrac{2}{3}.3.\left(2x+1\right)=16\)

\(\dfrac{236}{9}x+\dfrac{118}{9}-24x-12-\dfrac{8}{3}x-\dfrac{4}{3}+4x+2=16\)

\(\dfrac{32}{9}x+\dfrac{16}{9}=16\)

\(\dfrac{16}{9}\left(2x+1\right)=16\)

\(2x+1=9\Rightarrow2x=8\Rightarrow x=4\)

Vậy x=4

6 tháng 6 2018

@Akai Haruma , @phynit giải dùm em vs ạ

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

Lời giải:
ĐKXĐ: $x\geq -3,5$

PT \(\Leftrightarrow (\sqrt{2x+7}-1)+(\sqrt[3]{x+4}-1)+(x^2+8x+15)=0\)

\(\Leftrightarrow \frac{2(x+3)}{\sqrt{2x+7}+1}+\frac{x+3}{\sqrt[3]{(x+4)^2}+\sqrt[3]{x+4}+1}+(x+3)(x+5)=0\)

\(\Leftrightarrow (x+3)\left[\frac{2}{\sqrt{2x+7}+1}+\frac{1}{\sqrt[3]{(x+4)^2}+\sqrt[3]{x+4}+1}+(x+5)\right]=0\)

Với $x\geq -3,5$ dễ thấy biểu thức trong ngoặc vuông $>0$

Do đó: $x+3=0$

$\Leftrightarrow x=-3$ (thỏa mãn)

25 tháng 11 2018

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}\right)^2+2\sqrt{2x-3}\cdot1+1^2}+\sqrt{\left(\sqrt{2x-3}\right)+2\sqrt{2x-3}\cdot4+4^2}=5\)

\(\Leftrightarrow\sqrt{2x-3}+1+\sqrt{2x-3}+4=5\)

\(\Leftrightarrow\sqrt{2x-3}=0\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)

NV
27 tháng 11 2018

ĐKXĐ: \(x\ge\dfrac{3}{2}\)

\(\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+2.4.\sqrt{2x-3}+16}=5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)

\(\Leftrightarrow\sqrt{2x-3}+1+\sqrt{2x-3}+4=5\)

\(\Leftrightarrow2\sqrt{2x-3}=0\)

\(\Leftrightarrow2x-3=0\Rightarrow x=\dfrac{3}{2}\)