Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{-7}{813}+496.\left(\frac{-7}{813}\right)+\left(\frac{-7}{813}\right).316\)
\(=\frac{-7}{813}.\left(1+496+316\right)\)
\(=\frac{-7}{813}.813\)
\(=-7\)
b) \(B=\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\left(\frac{-9}{2}\right)+\frac{1}{7}.\left(\frac{-9}{10}\right)\)
\(=\frac{-9}{10}.\left(\frac{5}{14}+\frac{1}{2}+\frac{1}{7}\right)\)
\(=\frac{-9}{10}.1\)
\(=\frac{-9}{10}\)
\(S=\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}\)
\(S=\frac{3}{1.2}-\frac{5}{2.3}+\frac{7}{3.4}-\frac{9}{4.5}+\frac{11}{5.6}-\frac{13}{6.7}+\frac{15}{7.8}-\frac{17}{8.9}\)
\(S=3\left(\frac{1}{1.2}\right)-5\left(\frac{1}{2.3}\right)+7\left(\frac{1}{3.4}\right)-9\left(\frac{1}{4.5}\right)+11\left(\frac{1}{5.6}\right)-13\left(\frac{1}{6.7}\right)+15\left(\frac{1}{7.8}\right)-17\left(\frac{1}{8.9}\right)\)
\(S=3\left(1-\frac{1}{2}\right)-5\left(\frac{1}{2}-\frac{1}{3}\right)+7\left(\frac{1}{3}-\frac{1}{4}\right)-9\left(\frac{1}{4}-\frac{1}{5}\right)+11\left(\frac{1}{5}-\frac{1}{6}\right)-13\left(\frac{1}{6}-\frac{1}{7}\right)+15\left(\frac{1}{7}-\frac{1}{8}\right)-17\left(\frac{1}{8}-\frac{1}{9}\right)\)
\(S=\left(3-\frac{3}{2}\right)-\left(\frac{5}{2}-\frac{5}{3}\right)+\left(\frac{7}{3}-\frac{7}{4}\right)-\left(\frac{9}{4}-\frac{9}{5}\right)+\left(\frac{11}{5}-\frac{11}{6}\right)-\left(\frac{13}{6}-\frac{13}{7}\right)+\left(\frac{15}{7}-\frac{15}{8}\right)-\left(\frac{17}{8}-\frac{17}{9}\right)\)\(S=3-\frac{3}{2}-\frac{5}{2}+\frac{5}{3}+\frac{7}{3}-\frac{7}{4}-\frac{9}{4}+\frac{9}{5}+\frac{11}{5}-\frac{11}{6}-\frac{13}{6}+\frac{13}{7}+\frac{15}{7}-\frac{15}{8}-\frac{17}{8}+\frac{17}{9}\) Giờ bạn chỉ cần nhóm từng cặp phân số có cùng tử số rồi tính tiếp là ra kết quả thôi
( khi nhóm cặp nhớ đổi dấu nha)
\(A=\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}\)
\(=\left(1+\frac{1}{2}\right)-\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)-\left(\frac{1}{4}+\frac{1}{5}\right)+...-\left(\frac{1}{8}+\frac{1}{9}\right)\)
\(=1+\frac{1}{2}-\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+\frac{1}{4}-\frac{1}{4}-\frac{1}{5}+\frac{1}{5}+\frac{1}{6}-...-\frac{1}{9}\)
\(=1-\frac{1}{9}\)
\(=\frac{8}{9}\)
a) -23 + 176 - (2176 - 23)
= -23 + 176 - 2176 + 23
= (-23 + 23) + (176 - 2176)
= 0 + (-2000)
= -2000
b) 125 . (-24) + 24 . 225
= (-125) . 24 + 24 . 225
= 24 . (-125 + 225)
= 24 . 100
= 2400
a) \(\frac{x}{7}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x}{7}=\frac{2y}{10}=\frac{3z}{18}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{2y}{10}=\frac{3z}{18}=\frac{x-2y+3z}{7-10+18}=\frac{60}{15}=4\)
\(\Rightarrow\hept{\begin{cases}x=4\cdot7=28\\y=4\cdot5=20\\z=4\cdot6=24\end{cases}}\)
b) ta có \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\\\frac{y}{x}=\frac{5}{8}\Rightarrow\frac{x}{8}=\frac{y}{5}\end{cases}\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{8}}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}=\frac{x+y+z}{3+5+8}=\frac{72}{16}=4,5\)
\(\Rightarrow\hept{\begin{cases}x=4,5\cdot3=13,5\\y=4,5\cdot5=22,5\\z=4,5\cdot8=36\end{cases}}\)
áp dụng tính chất dãy tỉ số bằng ta đc
x/7=y/5=z/6=x/7=y/-10=z/18=y+z/-10+18=60/8=7,5
x=7.7,5=52,5
y=7.-10=-70
z=7.18=126
vậy x=52,5 y=-70 z=126
a, -5/6 -x = 7/12 + -1/3
⇔-10/12 - 12x/12 = 7/12 + -4/12
⇒-10 - 12x = 7 - 4
⇔-12x = 7 - 4 +10
⇔-12x = 13
⇔x = -13/12
b, x+13/-15 = 1/3
⇔-(x+13)/15 = 5/15
⇒ -x - 13 = 5
⇔-x = 5 +13
⇔-x = 18
⇔x = -18
c,-15/x-1 = -3/5
⇔-75/(x-1).5 = -3.(x-1)/5.(x-1)
⇒-75 = -3x + 3
⇔3x = 3 + 75
⇔3x = 78
⇔x = 26
d, (1/2).x + -2/5 = 1/5
⇔5x/10 + -4/10 = 1/10
⇒5x - 4 = 1
⇔5x = 1 + 4
⇔5x = 5
⇔x = 1
e, (-2/3).x + 1/5 = 1/10
⇔-20x/30 + 6/30 = 3/30
⇒-20x + 6 = 3
⇔-20x = 3 - 6
⇔-20x = -3
⇔x = 3/20
f, 4/5 - (1/2).x = 1/10
⇔8/10 - 5x/10 = 1/10
⇒8 - 5x = 1
⇔-5x = 1 - 8
⇔-5x = -7
⇔x=7/5
S = \(\frac{3}{1.2}-\frac{5}{2.3}+\frac{7}{3.4}-\frac{9}{4.5}+\frac{11}{5.6}-\frac{13}{6.7}+\frac{15}{7.8}-\frac{17}{8.9}\)
= \(\left(\frac{1}{1}+\frac{1}{2}\right)-\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)-...-\left(\frac{1}{8}+\frac{1}{9}\right)\) ( Vì \(\frac{a}{b.c}=\frac{1}{b}+\frac{1}{c}\)với b+c=a )
= \(\frac{1}{1}+\frac{1}{2}-\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+\frac{1}{4}-\frac{1}{4}-...-\frac{1}{8}-\frac{1}{9}\)
= \(\frac{1}{1}-\frac{1}{9}\)
= \(\frac{8}{9}\)
Bài làm:
a) Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x}{7}=\frac{y}{5}=\frac{z}{6}=\frac{x-2y+3z}{7-10+18}=\frac{60}{15}=4\)
\(\Rightarrow\hept{\begin{cases}x=28\\y=20\\z=24\end{cases}}\)
b) Ta có: \(\frac{x}{y}=\frac{3}{5}\Leftrightarrow\frac{x}{3}=\frac{y}{5}\) và \(\frac{y}{z}=\frac{5}{8}\Leftrightarrow\frac{y}{5}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{8}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}=\frac{x+y+z}{3+5+8}=\frac{72}{16}=\frac{9}{2}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{45}{2}\\z=36\end{cases}}\)
a) \(\hept{\begin{cases}\frac{x}{7}=\frac{y}{5}=\frac{z}{6}\\x-2y+3z=60\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{7}=\frac{2y}{10}=\frac{3z}{18}\\x-2y+3z=60\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{2y}{10}=\frac{3z}{18}=\frac{x-2y+3z}{7-10+18}=\frac{60}{15}=4\)
\(\Rightarrow\hept{\begin{cases}x=28\\y=20\\z=24\end{cases}}\)
b) \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\\\frac{y}{z}=\frac{5}{8}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\\frac{y}{5}=\frac{z}{8}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}=\frac{z}{8}\\x+y+z=72\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}=\frac{x+y+z}{3+5+8}=\frac{72}{16}=\frac{9}{2}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{45}{2}\\z=36\end{cases}}\)
\(\sqrt{813+72}.15+\frac{6}{5}\\ < =>\sqrt{900}.15+\frac{6}{5}\\=30.15+\frac{6}{5}\\ =450+\frac{6}{5}\\ =451,2\)
=451,2