\(\sqrt{7+2\sqrt{2}}+\sqrt{7-2\sqrt{6}}\)


 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2020

sai đề rồi , mình sửa nốt 

\(\sqrt{7+2\sqrt{6}}+\sqrt{7-2\sqrt{6}}\)

\(=\sqrt{6+2\sqrt{6}+1}+\sqrt{6-2\sqrt{6}+1}\)

\(=\sqrt{\sqrt{6}^2+2\sqrt{6}+\sqrt{1}^2}+\sqrt{\sqrt{6}^2-2\sqrt{6}+\sqrt{1}^2}\)

\(=\sqrt{\left(\sqrt{6}+\sqrt{1}\right)^2}+\sqrt{\left(\sqrt{6}-\sqrt{1}\right)^2}\)

\(=|\sqrt{6}+\sqrt{1}|+|\sqrt{6}-\sqrt{1}|\)

\(=\sqrt{6}+\sqrt{1}+\sqrt{6}-\sqrt{1}=2\sqrt{6}\)

1 tháng 8 2020

Sửa đề:

\(\sqrt{7+2\sqrt{6}}+\sqrt{7-2\sqrt{6}}\)

\(=\sqrt{6+2\sqrt{6}+1}+\sqrt{6-2\sqrt{6}+1}\)

\(=\sqrt{\left(\sqrt{6}+1\right)^2}+\sqrt{\left(\sqrt{6}-1\right)^2}\)

\(=\sqrt{6}+1+\sqrt{6}-1\)

\(=2\sqrt{6}\)

Chúc bạn học tốt 

7 tháng 9 2017

do \(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(\Rightarrow\sqrt{x^2+x+1}>0\forall x\)

voi dk \(x\ge-1\) ta co 

\(x^2+x+1=x^2+2x+1\Rightarrow x=0\)(tm)

b,\(\sqrt{4x^2-20x+25}+2x=5\)

\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}+2x=5\)

    \(\Leftrightarrow\left|2x-5\right|+2x=5\)

th1 \(2x-5\ge0\Leftrightarrow x\ge\frac{5}{2}\) ta co\(2x-5+2x=5\Leftrightarrow4x=10\Rightarrow x=2.5\left(tm\right)\)

th2 \(2x-5< 0\Leftrightarrow x< \frac{5}{2}\) \(5-2x+2x=5\Leftrightarrow5=5\)

\(\Rightarrow\) dung voi moi \(x< \frac{5}{2}\)

kl \(x\le\frac{5}{2}\)

c, \(\left|x-1\right|=4\) \(\Rightarrow\orbr{\begin{cases}x-1=4\left(x\ge1\right)\\x-1=-4\left(x< 1\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\left(tm\right)\\x=-3\left(tm\right)\end{cases}}}\)

d.\(\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+16}\)

 =\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge\sqrt{4}+\sqrt{16}=6\)

ma \(-x^2-2x+5=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)

dau = xay ra \(\Leftrightarrow x=-1\)