Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Dễ thấy\(\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)=x^2-6x+13-x^2+6x-10=3\)
\(\Leftrightarrow1.\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)=3\)
\(\Leftrightarrow\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}=3\)
Ta có: a+ b= \(\frac{-1+\sqrt{2}}{2}\) + \(\frac{-1-\sqrt{2}}{2}\)= -1
a*b = \(\frac{-1+\sqrt{2}}{2}\)* \(\frac{-1-\sqrt{2}}{2}\)= -\(\frac{1}{4}\)
a2 + b2 = (a+ b)2 - 2ab = 1+ \(\frac{1}{2}\)= \(\frac{3}{2}\)
a4 + b4 = (a2 + b2 )2 - 2a2b2 = \(\frac{9}{4}\)- \(\frac{1}{8}\)= \(\frac{17}{8}\)
a3 + b3 = ( a + b)3 - 3ab(a + b ) = -1-\(\frac{3}{4}\)= \(\frac{-7}{4}\)
vay a7 + b7 = (a3 + b3 )(a4 + b4 ) -a3b3(a+b)= \(\frac{-7}{4}\)* \(\frac{17}{8}\)- (-\(\frac{1}{64}\)) * (-1) = \(\frac{-239}{64}\)
Em thử nhá, ko chắc đâu.
ĐK: \(-1\le x\le7\)
Nhận thấy x = 3 là một nghiệm, ta biển đổi như sau:
\(PT\Leftrightarrow x^2-6x+9=\left(\sqrt{x+1}-2\right)+\left(\sqrt{7-x}-2\right)\)
\(\Leftrightarrow\left(x-3\right)^2-\frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{7-x}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-3-\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{7-x}+2}\right)=0\)
\(\Leftrightarrow x=3\)
HAy là cách này ạ? Sai thì em chịu nha;(
ĐK: ...
Dễ thấy VT >0 với mọi x thỏa mãn đk.
Áp dụng BđT Bunhiacopxki vào VT được: \(VT^2\le2\left(x+1+7-x\right)=2.8=16\Rightarrow VT\le4\) (1)
Đẳng thức xảy ra khi \(x=3\)
Mặt khác \(VP=\left(x^2-6x+9\right)+4=\left(x-3\right)^2+4\ge4\) (2)
Đẳng thức xảy ra khi x = 3
Mà theo đề bài ta phải có: \(VT=VP\) kết hợp (1) và (2) suy ra \(VT=VP=4\Leftrightarrow x=3\)
\(\sqrt{7-x}+\sqrt{x+1}=x^2-6x+13\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{7-x}+\sqrt{x+1}\right)^2\)
\(\le\left(1+1\right)\left(7-x+x+1\right)=16\)
\(\Rightarrow VT^2\le16\Rightarrow VT\le4\)
Lại có: \(VP=x^2-6x+13\)
\(=x^2-6x+9+4=\left(x-3\right)^2+4\ge4\)
Suy ra \(VT\le VP=4\) xảy ra khi \(VT=VP=4\)
\(\Rightarrow\left(x-3\right)^2+4=4\Rightarrow x-3=0\Rightarrow x=3\)
(\(\sqrt{x^2-6x+13}\) - \(\sqrt{x^2-6x+10}\))(\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\)) = x2 - 6x + 13 - x2 + 6x - 10 = 3
=>
\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\) = 3
\(\sqrt{7-x}+\sqrt{x+1}=x^2-6x+13,đkxđ:-1\le x\le7,\Leftrightarrow\left(\sqrt{7-x}+\sqrt{x+1}\right)^2=\left(x^2-6x+13\right)^2\Leftrightarrow7-x+x+1+2\sqrt{\left(7-x\right)\left(x+1\right)}=\left(x^2-6x+13\right)\left(x^2-6x+13\right)\Leftrightarrow8+2\sqrt{7x+8-x^2-x}=x^4-6x^3+13x^2-6x^3+36x^2-78x+13x^2-78x+169\Leftrightarrow8+2\sqrt{-x^2+6x+8}=x^4-12x^3+62x^2-120x+169\Leftrightarrow Bírồi:< \)
\(Chot=7-x\Rightarrow x=7-t\Rightarrow\sqrt{7-x}=\sqrt{7-7+t}=\sqrt{t}và\sqrt{x+1}=\sqrt{7-t+1}=\sqrt{8-t}vàx^2-6x+13=\left(7-t\right)^2-6\left(7-t\right)+13,tacópt:\sqrt{t}+\sqrt{8-t}=49-14t+t^2-42+6t+13\Leftrightarrow\sqrt{t}+\sqrt{8-t}=t^2-8t+20=t^2-2.4.t+16+4=\left(t-4\right)^2+4\Leftrightarrow\left(\sqrt{t}+\sqrt{8-t}\right)^2=\left[\left(t-4\right)^2+4\right]^2\Leftrightarrow t-t+8+2\sqrt{8t-t^2}=...\left(bítiếp\right)\)
\(\sqrt{7-x}+\sqrt{x+1}=x^2-6x+13\) (ĐKXĐ : \(-1\le x\le7\))
Áp dụng bất đẳng thức Bunhiacopxki vào vế trái của phương trình : \(\left(1.\sqrt{7-x}+1.\sqrt{x+1}\right)^2\le\left(1^2+1^2\right)\left(7-x+x+1\right)\)
\(\Rightarrow\left(\sqrt{7-x}+\sqrt{x+1}\right)^2\le16\Rightarrow\sqrt{7-x}+\sqrt{x+1}\le4\) (1)
Xét vế phải của phương trình : \(x^2-6x+13=\left(x^2-6x+9\right)+4=\left(x-3\right)^2+4\ge4\) (2)
Từ (1) và (2) ta suy ra phương trình ban đầu tương đương với : \(\begin{cases}\sqrt{7-x}+\sqrt{x+1}=4\\x^2-6x+13=4\end{cases}\) \(\Leftrightarrow x=3\) (TMĐK)
Vậy phương trình có nghiệm x = 3
\(\text{Condition}:-1\le x\le7\)
Đặt:\(\left\{{}\begin{matrix}a=\sqrt{7-x}\ge0\\b=\sqrt{x+1}\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=\sqrt{20-a^2b^2}\\a^2+b^2=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2b^2+2ab-12=0\\a^2+b^2=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(ab+1+\sqrt{13}\right)\left(ab+1-\sqrt{13}\right)=0\\a^2+b^2=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}ab=\sqrt{13}-1\\a^2+b^2=8\end{matrix}\right.\) \(\left(ab+\sqrt{13}+1>0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=\sqrt{6+2\sqrt{13}}\\ab=\sqrt{13}-1\end{matrix}\right.\)
you giải cái này đi