Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em kiểm tra lại đề câu đầu.
b.
\(\sqrt{3x^2-6x+1}=1\)
\(\Leftrightarrow3x^2-6x+1=1\)
\(\Leftrightarrow3x\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
c.
\(\sqrt{4x^2-4x+1}=9\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=9\)
\(\Leftrightarrow\left|2x-1\right|=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=9\\2x-1=-9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-4\end{matrix}\right.\)
f) Ta có: \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)
\(\Leftrightarrow4\left|x+1\right|-3\left|x+1\right|=4\)
\(\Leftrightarrow\left|x+1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
g) Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
\(\Leftrightarrow5\sqrt{x+1}-\sqrt{x+1}=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
a,\(\sqrt{\left(3x-1\right)^2}=5=>|3x-1|=5=>\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b, \(\sqrt{4x^2-4x+1}=3=\sqrt{\left(2x-1\right)^2}=3=>\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
c, \(\sqrt{x^2-6x+9}+3x=4=>|x-3|=4-3x\)
TH1: \(|x-3|=x-3< =>x\ge3=>x-3=4-3x=>x=1,75\left(ktm\right)\)
TH2 \(|x-3|=3-x< =>x< 3=>3-x=4-3x=>x=0,5\left(tm\right)\)
Vậy x=0,5...
d, đk \(x\ge-1\)
=>pt đã cho \(< =>9\sqrt{x+1}-6\sqrt{x+1}+4\sqrt{x+1}=12\)
\(=>7\sqrt{x+1}=12=>x+1=\dfrac{144}{49}=>x=\dfrac{95}{49}\left(tm\right)\)
a) Ta có: \(\sqrt{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow\left|3x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b) Ta có: \(\sqrt{4x^2-4x+1}=3\)
\(\Leftrightarrow\left|2x-1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
c) Ta có: \(\sqrt{x^2-6x+9}+3x=4\)
\(\Leftrightarrow\left|x-3\right|=4-3x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-23x\left(x\ge3\right)\\x-3=23x-4\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+23x=4+3\\x-23x=4+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{24}\left(loại\right)\\x=\dfrac{-4}{22}=\dfrac{-2}{11}\left(loại\right)\end{matrix}\right.\)
1: ĐKXĐ: x>1/2
=>\(\dfrac{x}{\sqrt{2x-1}}+\dfrac{x}{\sqrt[4]{4x-3}}=2\)
x^2-2x+1>=0
=>x^2>=2x-1
=>\(\dfrac{x}{\sqrt{2x-1}}>=1\)
Dấu = xảy ra khi x=1
(x^2-2x+1)(x^2+2x+3)>=0
=>x^4-4x+3>=0
=>x^4>=4x-3
=>\(\dfrac{x}{\sqrt[4]{4x-3}}>=1\)
=>VT>=2
Dấu = xảy ra khi x=1
2: 4x-1=x+x+2x-1
5x-2=x+2x-1+2x-1
\(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}\right)\left(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}\right)>=9\)
=>\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\dfrac{9}{\sqrt{x}+\sqrt{x}+\sqrt{2x-1}}\)
\(\left(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}\right)^2< =3\left(4x-1\right)\)
=>\(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}< =\sqrt{3\left(4x-1\right)}\)
=>\(\dfrac{2}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\dfrac{3\sqrt{3}}{\sqrt{4x-1}}\)
Tương tự, ta cũng có: \(\dfrac{1}{\sqrt{x}}+\dfrac{2}{\sqrt{2x-1}}>=\dfrac{3\sqrt{3}}{\sqrt{5x-2}}\)
=>\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\sqrt{3}\left(\dfrac{1}{\sqrt{4x-1}}+\dfrac{1}{\sqrt{5x-2}}\right)\)
Dấu = xảy ra khi x=1
a:Ta có: \(\sqrt{2x+9}=\sqrt{5-4x}\)
\(\Leftrightarrow2x+9=5-4x\)
\(\Leftrightarrow6x=-4\)
hay \(x=-\dfrac{2}{3}\left(nhận\right)\)
b: Ta có: \(\sqrt{2x-1}=\sqrt{x-1}\)
\(\Leftrightarrow2x-1=x-1\)
hay x=0(loại)
c: Ta có: \(\sqrt{x^2+3x+1}=\sqrt{x+1}\)
\(\Leftrightarrow x^2+3x=x\)
\(\Leftrightarrow x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-2\left(loại\right)\end{matrix}\right.\)
a. \(\sqrt{2x+9}=\sqrt{5-4x}\)
<=> 2x + 9 = 5 - 4x
<=> 2x + 4x = 5 - 9
<=> 6x = -4
<=> x = \(\dfrac{-4}{6}=\dfrac{-2}{3}\)
a)\(\sqrt{3x-1}\)\(=2\)
⇔\(\text{3x-1=2}^2\)
⇔\(3x=5\)
⇔\(x=\dfrac{5}{3}\)
b)\(\sqrt{x^2-4x+4}\)\(\text{=3x-1}\)
⇔\(\text{x-2=3x-1}\)
⇔\(-2x=1\)
⇔\(x=\)\(\dfrac{-1}{2}\)
c)\(\sqrt{x}\)=2-x sai đề bài
d)\(\sqrt{x^2+4}\)=\(\sqrt{3x+8}\)
⇔\(x^2\)\(\text{+4=3x+8}\)
⇔\(x^2\)\(-3x-4=0\)
⇔\(\left(x+1\right)\left(x-4\right)=0\)
⇔\(\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)
\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)
Vì \(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)
\(\Rightarrow x=3\)
d) \(\sqrt{x^2-6x+9}=2\Leftrightarrow\sqrt{\left(x-3\right)^2}=2\Leftrightarrow x-3=2\Leftrightarrow x=5\)
e) đk: \(x\ge2\)\(\sqrt{x^2-3x+2}=\sqrt{x-1}\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)f) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-3\right)^2}\Leftrightarrow2x-1=x-3\Leftrightarrow x=-2\)
c: Ta có: \(\sqrt{x+4\sqrt{x-4}}=2\)
\(\Leftrightarrow\left|\sqrt{x-4}+2\right|=2\)
\(\Leftrightarrow x-4=0\)
hay x=4
\(\sqrt{4x+1}-\sqrt{3x+1}=1\)
\(\Rightarrow\left(\sqrt{4x+1}-\sqrt{3x+1}\right)^2=1\)
\(\Rightarrow|4x+1|-2\sqrt{\left(4x+1\right)\left(3x+1\right)}+|3x+1|=1\)
Dùng bảng xét dấu mà xét nốt bạn nhé