K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2021

sửa đề\(\sqrt{4+\sqrt{15}}\)

9 tháng 6 2021

Đặt A=  \(\sqrt{4+\sqrt{15}}\)

\(\sqrt{2}A=\sqrt{8+2\sqrt{15}}\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\left|\sqrt{5}+\sqrt{3}\right|=\sqrt{5}+\sqrt{3}\)

\(\Rightarrow A=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{10}+\sqrt{6}}{2}\)

29 tháng 7 2021

Bài 4: 

a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))

\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3

\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)

\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)

\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)

\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)

\(\Leftrightarrow\) \(2x^2+7x+3=0\)

\(\Delta=7^2-4.2.3=25\)\(\sqrt{\Delta}=5\)

Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:

\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)

Vậy ...

Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được

Bài 5: 

a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)

\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)

\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)

\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)

\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)

Vậy ...

Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\)\(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!

VD1:

a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))

\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)

\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)

\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)

Vậy ...

Phần b tương tự nha

c, \(\sqrt{3}x^2-\sqrt{12}=0\)

\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)

\(\Leftrightarrow\) \(x^2=2\)

\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)

Vậy ...

d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)

\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)

\(\Leftrightarrow\) \(x-1=5\)

\(\Leftrightarrow\) \(x=6\)

Vậy ...

VD2: 

Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)

b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))

\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(x^2=3\)

\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)

Vậy ...

c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))

\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(2x^2-4x=0\)

\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)

Vậy ...

Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)

29 tháng 7 2021

cảm ơn bn nhiều nha

Vd1: 

d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)

\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)

\(\Leftrightarrow x=6\)

12 tháng 7 2021

\(\sqrt{13+\sqrt{48}}=\sqrt{13+\sqrt{4.12}}=\sqrt{13+2\sqrt{12}}=\sqrt{\left(\sqrt{12}+1\right)^2}\)

\(=\sqrt{12}+1=2\sqrt{3}+1\)

\(\Rightarrow\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}-1\)

\(\Rightarrow\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{3+\sqrt{3}-1}=\sqrt{2+\sqrt{3}}\)

\(\Rightarrow\sqrt{\dfrac{4+2\sqrt{3}}{2}}=\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)

\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}==2.\dfrac{\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}+\sqrt{2}\)

2) biến đổi khúc sau như câu 1:

\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

 

12 tháng 7 2021

1) Ta có: \(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-\sqrt{13+\sqrt{4.12}}}=\sqrt{5-\sqrt{13+2\sqrt{12}}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{12}\right)^2+2.\sqrt{12}+1^2}}=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}=\sqrt{5-\left|\sqrt{4.3}+1\right|}\)

\(=\sqrt{5-\left(2\sqrt{3}+1\right)}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)

\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=2\sqrt{3+\sqrt{3}-1}=2\sqrt{2+\sqrt{3}}\)

\(=2\sqrt{\dfrac{4+2\sqrt{3}}{2}}=2\sqrt{\dfrac{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}{2}}=2\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}\)

\(=2.\dfrac{\left|\sqrt{3}+1\right|}{\sqrt{2}}=\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{6}+\sqrt{2}\)

2) Ta có: \(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{3}-1\) (như trên)

\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\) 

\(=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}=\sqrt{\left(\sqrt{3}+1\right)^2}=\left|\sqrt{3}+1\right|=\sqrt{3}+1\)

 

 

AH
Akai Haruma
Giáo viên
19 tháng 7 2021

Lần sau bạn chú ý viết đầy đủ đề.

1.

\(\sqrt{9+4\sqrt{5}-\sqrt{9-4\sqrt{5}}}=\sqrt{9+4\sqrt{5}-\sqrt{5-2\sqrt{4.5}+4}}\)

\(=\sqrt{9+4\sqrt{5}-\sqrt{(\sqrt{5}-\sqrt{4})^2}}=\sqrt{9+4\sqrt{5}-(\sqrt{5}-\sqrt{4})}\)

\(=\sqrt{9+4\sqrt{5}-\sqrt{5}+2}=\sqrt{11+3\sqrt{5}}\)

AH
Akai Haruma
Giáo viên
19 tháng 7 2021

2.

\(\sqrt{8-2\sqrt{7}-\sqrt{8+2\sqrt{7}}}=\sqrt{8-2\sqrt{7}-\sqrt{7+2\sqrt{7}+1}}\)

\(=\sqrt{8-2\sqrt{7}-\sqrt{(\sqrt{7}+1)^2}}\)

\(=\sqrt{8-2\sqrt{7}-\sqrt{7}-1}=\sqrt{7-3\sqrt{7}}\)

10 tháng 6 2019

a)ĐKXĐ \(\orbr{\begin{cases}x\ge3+\sqrt{2}\\x\le3-\sqrt{2}\end{cases}}\)

Đặt \(\sqrt{x^2-6x+7}=a\ge0.\)\(\Rightarrow x^2-6x+7=a^2\Leftrightarrow x^2-6x=a^2-7\)

Ta có phương trình:

\(a^2-7+a=5\Leftrightarrow a^2+a-12=0\Leftrightarrow a^2-3a+4a-12=0\)

\(\Leftrightarrow a\left(a-3\right)+4\left(a-3\right)=0\Leftrightarrow\left(a-3\right)\left(a+4\right)=0\)

\(\Leftrightarrow a-3=0\)(Vì \(a\ge0\rightarrow a+4\ge4\))

\(\Leftrightarrow a=3\Leftrightarrow\sqrt{x^2-6x+7}=3\)

\(\Leftrightarrow x^2-6x+7=9\Leftrightarrow x^2-6x-2=0\)

Ta có \(\Delta^'=3^2-\left(-2\right)=11>0\)

\(\Rightarrow x_1=3-\sqrt{11}\)(TMĐK)

\(x_2=3+\sqrt{11}\)(TMĐK)

Kết luận vậy phương trình đã cho có 2 nghiệm phân biệt .............

b) ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{x+1}=a\ge0;\sqrt{x+6}=b>0\)

\(\Rightarrow b^2-a^2=x+6-\left(x+1\right)=5\)

Ta có hệ phương trinh :\(\hept{\begin{cases}a+b=5\\b^2-a^2=5\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(b-a\right)\left(b+a\right)=5\\a+b=5\end{cases}}\Leftrightarrow\hept{\begin{cases}b-a=1\\a+b=5\end{cases}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}}\)(TMĐK)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+1}=2\\\sqrt{x+6}=3\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=4\\x+6=9\end{cases}\Leftrightarrow}}x=3\left(TMĐK\right).\)

Vậy phương trình đã cho có nghiệm duy nhất là ...

Chỗ đó bạn viết đề mình không biết vế phải bằng 5 hay 55 nữa

Nếu là 55 thì làm tương tự và chỗ hệ thay bằng \(\hept{\begin{cases}a+b=55\\b^2-a^2=5\end{cases}}\)Giải tương tự tìm được \(\hept{\begin{cases}a=\frac{302}{11}\\b=\frac{303}{11}\end{cases}\Leftrightarrow x=\frac{91083}{121}\left(TMĐK\right).}\)

c) ĐKXĐ \(x\ge1\)

 \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=4\)

\(\Leftrightarrow\sqrt{x-1-2.\sqrt{x-1}.2+4}+\sqrt{x-1-2.\sqrt{x-1}.3+9}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=4\)

\(\Leftrightarrow|\sqrt{x-1}-2|+|\sqrt{x-1}-3|=4\)(3)

* Nếu \(\sqrt{x-1}< 2\)phương trình (3) tương đương với

\(2-\sqrt{x-1}+3-\sqrt{x-1}=4\Leftrightarrow2\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=\frac{1}{4}\Leftrightarrow x=\frac{5}{4}\left(TMĐK\right)\)

* Nếu \(2\le\sqrt{x-1}\le3\)phương trình (3) tương đương với

\(\sqrt{x-1}-2+3-\sqrt{x-1}=4\Leftrightarrow1=4\left(loại\right)\)

* Nếu \(\sqrt{x-1}>3\)phương trình (3) tương đương với

\(\sqrt{x-1}-2+\sqrt{x-1}-3=4\)\(\Leftrightarrow2\sqrt{x-1}=9\Leftrightarrow\sqrt{x-1}=\frac{9}{2}\Leftrightarrow x-1=\frac{81}{4}\Leftrightarrow x=\frac{85}{4}\left(TMĐK\right)\)

Vậy phương trình đã cho có 2 nghiệm phân biệt .......

'

25 tháng 6 2021

`A=(sqrtx-1)/(sqrtx+1)-(sqrtx+3)/(sqrtx-2)-(x+5)/(x-sqrtx-2)`

`đk:x>=0,x ne 4`

`A=((sqrtx-1)(sqrtx-2)-(sqrtx+3)(sqrtx+1)-x-5)/(x-sqrtx-2)`

`=(x-3sqrtx+2-x-4sqrtx-3-x-5)/(x-sqrtx-2)`

`=(-x-7sqrtx-6)/(x-sqrtx-2)`

`=(-(sqrtx+1)(sqrtx+6))/((sqrtx+1)(sqrtx-2))`

`=(-(sqrtx+6))/(sqrtx-2)`

25 tháng 6 2021

cảm ơn ạ

25 tháng 6 2021

`(sqrtx+2)/(sqrtx-3)-(sqrtx+1)/(sqrtx-2)-(3(sqrtx-1))/(x-5sqrtx+6)`

đk:`x>=0,x ne 4,x ne 9`

`=((sqrtx+2)^2-(sqrtx+1)(sqrtx+3)-3(sqrtx-1))/(x-5sqrtx+6)`

`=(x+4sqrtx+4-x-4sqrtx-3-3sqrtx+3)/(x-5sqrtx+6)`

`=(4-3sqrtx)/(x-5sqrtx+6)`

25 tháng 6 2021

thankkkkkkkkkkkkkk!!!!!!!!!!!!!!!!!

5 tháng 8 2021

22,

1, Đặt √(3-√5) = A

=> √2A=√(6-2√5)

=> √2A=√(5-2√5+1)

=> √2A=|√5 -1|

=> A=\(\dfrac{\sqrt{5}-1}{\text{√2}}\)

=> A= \(\dfrac{\sqrt{10}-\sqrt{2}}{2}\)

2, Đặt √(7+3√5) = B

=> √2B=√(14+6√5)

 => √2B=√(9+2√45+5)

=> √2B=|3+√5|

=> B= \(\dfrac{3+\sqrt{5}}{\sqrt{2}}\)

=> B= \(\dfrac{3\sqrt{2}+\sqrt{10}}{2}\)

3, 

Đặt √(9+√17) - √(9-√17) -\(\sqrt{2}\)=C

=> √2C=√(18+2√17) - √(18-2√17) -\(2\)

=> √2C=√(17+2√17+1) - √(17-2√17+1) -\(2\)

=> √2C=√17+1- √17+1 -\(2\)

=> √2C=0

=> C=0

26,

|3-2x|=2\(\sqrt{5}\)

TH1: 3-2x ≥ 0 ⇔ x≤\(\dfrac{-3}{2}\)

3-2x=2\(\sqrt{5}\)

-2x=2\(\sqrt{5}\) -3

x=\(\dfrac{3-2\sqrt{5}}{2}\) (KTMĐK)

TH2: 3-2x < 0 ⇔ x>\(\dfrac{-3}{2}\)

3-2x=-2\(\sqrt{5}\)

-2x=-2√5 -3

x=\(\dfrac{3+2\sqrt{5}}{2}\) (TMĐK)

Vậy x=\(\dfrac{3+2\sqrt{5}}{2}\)

 

 

 

 

 

 

6 tháng 8 2021

2, \(\sqrt{x^2}\)=12 ⇔ |x|=12 ⇔ x=12, -12

3, \(\sqrt{x^2-2x+1}\)=7

⇔ |x-1|=7 

TH1: x-1≥0 ⇔ x≥1

x-1=7 ⇔ x=8 (TMĐK)

TH2: x-1<0 ⇔ x<1

x-1=-7 ⇔ x=-6 (TMĐK)

Vậy x=8, -6

4, \(\sqrt{\left(x-1\right)^2}\)=x+3

⇔ |x-1|=x+3

TH1: x-1≥0 ⇔ x≥1

x-1=x+3 ⇔ 0x=4 (KTM)

TH2: x-1<0 ⇔ x<1

x-1=-x-3 ⇔ 2x=-2 ⇔x=-1 (TMĐK)

Vậy x=-1