\(\sqrt{2x-2\sqrt{x^2-4}}+\sqrt{x-2}\)

Rút gọn :

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2020

lm trên symbolab.com (thêm simplify là ra)

16 tháng 8 2020

\(\sqrt{2x-2\sqrt{x^2-4}}+\sqrt{x-2}=\sqrt{\left(\sqrt{x-2}-\sqrt{x+2}\right)^2}+\sqrt{x-2}\)

\(=\left|\sqrt{x-2}-\sqrt{x+2}\right|+\sqrt{x-2}\)

\(=-\sqrt{x-2}+\sqrt{x+2}+\sqrt{x-2}\)

\(=\sqrt{x+2}\)

15 tháng 7 2018

\(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=\sqrt{x-2+2\sqrt{2}.\sqrt{x-2}+2}+\sqrt{x-2-2\sqrt{2}.\sqrt{x-2}+2}=\text{| }\sqrt{x-2}+\sqrt{2}\text{| }+\text{| }\sqrt{x-2}-\sqrt{2}\text{| }\) +) \(A=\sqrt{x-2}+\sqrt{2}+\sqrt{x-2}-\sqrt{2}=2\sqrt{x-2}\left(\text{ }\sqrt{x-2}\text{≥}\sqrt{2}\right)\)

+) \(A=\sqrt{x-2}+\sqrt{2}+\sqrt{2}-\sqrt{x-2}=2\sqrt{2}\left(\sqrt{x-2}< \sqrt{2}\right)\)

15 tháng 7 2018

Ta có \(A\sqrt{2}=\sqrt{2x+4\sqrt{2x-4}}+\sqrt{2x-4\sqrt{2x-4}}=\sqrt{2x-4+4\sqrt{2x-4}+4}\)

+\(\sqrt{2x-4-4\sqrt{2x-4}+4}=\sqrt{2x-4}+2+\sqrt{2x-4}-2=2\sqrt{2x-4}\)

=> A=\(2\sqrt{x-2}\)

15 tháng 7 2018

A = \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)

\(\sqrt{2}A=\sqrt{2}\left(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\right)\)

\(\sqrt{2}A=\sqrt{2\left(x+2\sqrt{2x-4}\right)}+\sqrt{2\left(x-2\sqrt{2x-4}\right)}\)

\(\sqrt{2}A=\sqrt{2x+4\sqrt{2x-4}}+\sqrt{2x-4\sqrt{2x-4}}\)

\(\sqrt{2}A=\sqrt{\left(2x-4\right)+2.2\sqrt{2x-4}+4}+\sqrt{\left(2x-4\right)-2.2\sqrt{2x-4}+4}\)

\(\sqrt{2}A=\sqrt{\left(\sqrt{2x-4}+2\right)^2}+\sqrt{\left(\sqrt{2x-4}-2\right)^2}\)

\(\sqrt{2}A=|\sqrt{2x-4}+2|+|\sqrt{2x-4}+2|\)

\(\sqrt{2}A=\sqrt{2x-4}+2+|\sqrt{2x-4}-2|\)

Xét 2 trường hợp:

+)\(\sqrt{2x-4}\ge2\)

\(\sqrt{2}A=\sqrt{2x-4}+2+\sqrt{2x-4}-2\)

\(\sqrt{2}A=2\sqrt{2x-4}\)

\(A=\sqrt{2}\sqrt{2x-4}=\sqrt{4x-8}\)

+)\(\sqrt{2x-4}< 2\)

\(\sqrt{2}A=\sqrt{2x-4}+2+2-\sqrt{2x-4}=4\)

Vậy...

( Bạn có thể bình phương lên cũng đc)

1 tháng 11 2017

P=\(1+2\sqrt{x}\).

Q=x-1.

Ta có: \(\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x^2+\sqrt{x}}{x\sqrt{x}+x}\)

\(=\frac{2\left(x+1\right)}{\sqrt{x}}+\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}\)

\(=\frac{2\left(x+1\right)}{\sqrt{x}}+\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)

\(=\frac{2x+2\sqrt{x}+2}{\sqrt{x}}\)

8 tháng 9 2020

cảm ơn bạn

29 tháng 7 2016

a) \(x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{\left(x-3\right)^2}=x+3+x-3=2x\)

b) \(\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{\left(x+2\right)^2}-\sqrt{x^2}=x+2-x=2\)

c) \(\sqrt{\frac{x^2-2x+1}{x-1}}=\sqrt{\frac{\left(x-1\right)^2}{x-1}}=\sqrt{x-1}\)

(Nhớ k cho mình với nhá!)

29 tháng 7 2016

a) \(x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{\left(x-3\right)^2}=x+3+\left|x-3\right|\Leftrightarrow\orbr{\begin{cases}x+3+x-3=2x\left(x\ge0\right)\\x+3+3-x=9\left(x< 0\right)\end{cases}}\)

c) \(\sqrt{\frac{x^2-2x+1}{x-1}}=\sqrt{\frac{\left(x-1\right)^2}{x-1}}=\sqrt{x-1}\)

19 tháng 6 2015

\(P=\frac{\sqrt{x}\left(\sqrt{x^3}+1\right)}{\left(x-\sqrt{x}+1\right)}+1-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}\)

\(P=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1-2\sqrt{x}-1\)

\(P=\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\)

3 tháng 8 2019

\(\sqrt{3}+\sqrt{8-2\sqrt{15}}\\ =\sqrt{3}+\sqrt{5-2\sqrt{5\cdot3}+3}\\ =\sqrt{3}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\\ =\sqrt{3}+\sqrt{5}-\sqrt{3}=\sqrt{5}\)

\(\sqrt{x-1-2\sqrt{x-2}}\left(x\ge2\right)\\ =\sqrt{x-2-2\sqrt{x-2}+1}\\ =\sqrt{\left(\sqrt{x-2}-1\right)^2}\\ =\left|\sqrt{x-2}-1\right|\\ =\left[{}\begin{matrix}\sqrt{x-2}-1\left(\sqrt{x-2}\ge1\Leftrightarrow x\ge3\right)\\1-\sqrt{x-2}\left(\sqrt{x-2}< 1\Leftrightarrow2\le x< 3\right)\end{matrix}\right.\)

Chúc bạn học tốt nhaok.

21 tháng 8 2018

\(A=\dfrac{\sqrt{2+\sqrt{4-x^2}}\left(\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right)}{4+\sqrt{4-x^2}}\)

\(\Rightarrow A=\sqrt{\left(2+x\right)^{^{ }3}}-\sqrt{\left(2-x\right)^3}=\left(\sqrt{2+x}-\sqrt{2-x}\right)\left(4+\sqrt{4-x^2}\right)\)

\(\Rightarrow A=\dfrac{\sqrt{4+2\sqrt{4-x^2}}\left(\sqrt{2+x}-\sqrt{2-x}\right)\left(4+\sqrt{4-x^2}\right)}{\sqrt{2}\left(4+\sqrt{4-x^2}\right)}\)

\(\Rightarrow A=\dfrac{\left(\sqrt{2+x}+\sqrt{2-x}\right)\left(\sqrt{2+x}-\sqrt{2-x}\right)}{\sqrt{2}}=2\sqrt{2}\)

21 tháng 8 2018

\(2\sqrt{2}\)