\(\sqrt{3}+\sqrt{8-2\sqrt{15}}\) , \(\sqrt{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

\(\sqrt{3}+\sqrt{8-2\sqrt{15}}\\ =\sqrt{3}+\sqrt{5-2\sqrt{5\cdot3}+3}\\ =\sqrt{3}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\\ =\sqrt{3}+\sqrt{5}-\sqrt{3}=\sqrt{5}\)

\(\sqrt{x-1-2\sqrt{x-2}}\left(x\ge2\right)\\ =\sqrt{x-2-2\sqrt{x-2}+1}\\ =\sqrt{\left(\sqrt{x-2}-1\right)^2}\\ =\left|\sqrt{x-2}-1\right|\\ =\left[{}\begin{matrix}\sqrt{x-2}-1\left(\sqrt{x-2}\ge1\Leftrightarrow x\ge3\right)\\1-\sqrt{x-2}\left(\sqrt{x-2}< 1\Leftrightarrow2\le x< 3\right)\end{matrix}\right.\)

Chúc bạn học tốt nhaok.

\(=\dfrac{8-x}{2+\sqrt[3]{x}}:\dfrac{4+2\sqrt[3]{x}+\sqrt[3]{x^2}}{2+\sqrt[3]{x}}+\dfrac{\sqrt[3]{x^2}-2\sqrt[3]{x}+2\sqrt[3]{x}}{\sqrt[3]{x}-2}\cdot\dfrac{\sqrt[3]{x^2}-1}{\sqrt[3]{x}\left(\sqrt[3]{x}+1\right)}\)

\(=2-\sqrt[3]{x}+\dfrac{\sqrt[3]{x}-1}{\sqrt[3]{x}-2}\)

\(=\dfrac{4-4\sqrt[3]{x}+\sqrt[3]{x^2}-\sqrt[3]{x}+1}{2-\sqrt[3]{x}}\)

\(=\dfrac{\sqrt[3]{x^2}-5\sqrt[3]{x}+5}{2-\sqrt[3]{x}}\)

2 tháng 8 2017

\(A=4-\sqrt{21-8\sqrt{5}}=4-\sqrt{4^2-8\sqrt{5}+\left(\sqrt{5}\right)^2}.\)

\(A=4-\sqrt{\left(4-\sqrt{5}\right)^2}=4-\left(4-\sqrt{5}\right)\)

=> \(A=\sqrt{5}\)

22 tháng 5 2018

Mẫu thức chung là (√x+1)(√x−4)

Bạn quy đồng lên rồi tính là ra

P/s: mình hơi lười. Bạn thông cảm nhé

Ta có: \(B=21\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)^2-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)^2-15\sqrt{15}\)

\(=21\cdot\left[2+\sqrt{3}+3-\sqrt{5}+2\sqrt{\left(2+\sqrt{3}\right)\left(3-\sqrt{5}\right)}\right]-6\cdot\left[2-\sqrt{3}+3+\sqrt{5}+2\cdot\sqrt{\left(2-\sqrt{3}\right)\left(3+\sqrt{5}\right)}\right]-15\sqrt{15}\)

\(=21\cdot\left(5+\sqrt{3}-\sqrt{5}+\sqrt{\left(4+2\sqrt{3}\right)\left(6-2\sqrt{5}\right)}\right)-6\cdot\left[5-\sqrt{3}+\sqrt{5}+\sqrt{\left(4-2\sqrt{3}\right)\left(6+2\sqrt{5}\right)}\right]-15\sqrt{15}\)

\(=21\cdot\left[5+\sqrt{3}-\sqrt{5}+\left(\sqrt{3}+1\right)\left(\sqrt{5}-1\right)\right]-6\cdot\left[5-\sqrt{3}+\sqrt{5}+\left(\sqrt{3}-1\right)\left(\sqrt{5}+1\right)\right]-15\sqrt{15}\)

\(=21\cdot\left(5+\sqrt{3}-\sqrt{5}+\sqrt{15}-\sqrt{3}+\sqrt{5}-1\right)-6\cdot\left(5-\sqrt{3}+\sqrt{5}+\sqrt{15}+\sqrt{3}-\sqrt{5}-1\right)-15\sqrt{15}\)

\(=21\cdot\left(4+\sqrt{15}\right)-6\left(4+\sqrt{15}\right)-15\sqrt{15}\)

\(=84+21\sqrt{15}-24-6\sqrt{15}-15\sqrt{15}\)

\(=60\)

13 tháng 8 2020

Giúp e câu a nữa ạ

1 tháng 11 2017

P=\(1+2\sqrt{x}\).

Q=x-1.

27 tháng 9 2018

\(\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

\(=\frac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{x-1-\left(x-4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{3}\)

\(=\frac{\sqrt{x}-2}{3\sqrt{x}}\)

27 tháng 9 2018

\(\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)Đkxđ : x>2

=(\(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)\(:\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)-\left(x-4\right)}\)

\(=\frac{1}{\sqrt{x}}.\frac{\sqrt{x}-2}{3}=\frac{\sqrt{x}-2}{3\sqrt{x}}\)

12 tháng 12 2018

a,\(\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}\)

\(=\sqrt{2}\left(\sqrt{3}+1\right)\sqrt{2-\sqrt{3}}\)

\(=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}\)

\(=\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\)

\(=3-1\)

\(=2\)

b, \(\left(\sqrt{4+\sqrt{15}}-\sqrt{16-3\sqrt{15}}\right)\left(\sqrt{3}+\sqrt{5}\right)\)

\(=\frac{\sqrt{8+2\sqrt{15}}-\sqrt{32-6\sqrt{15}}}{\sqrt{2}}.\left(\sqrt{3}+\sqrt{5}\right)\)

\(=\frac{\sqrt{3+2\sqrt{3}.\sqrt{5}+5}-\sqrt{27-2.3\sqrt{3}.\sqrt{5}+5}}{\sqrt{2}}\left(\sqrt{3}+\sqrt{5}\right)\)

\(=\frac{\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{3}-\sqrt{5}\right)^2}}{\sqrt{2}}\left(\sqrt{3}+\sqrt{5}\right)\)

\(=\frac{\sqrt{3}+\sqrt{5}-3\sqrt{3}+\sqrt{5}}{\sqrt{2}}\left(\sqrt{3}+\sqrt{5}\right)\)

\(=\frac{2\sqrt{5}-2\sqrt{3}}{\sqrt{2}}\left(\sqrt{5}+\sqrt{3}\right)\)

\(=\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)\)

\(=\sqrt{2}\left(5-3\right)\)

\(=2\sqrt{2}\)

18 tháng 7 2019

I: Rút gọn

\(A=\sqrt{7-4\sqrt{3}}\\ =\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\\ =\sqrt{\left(2-\sqrt{3}\right)^2}\\ =2-\sqrt{3}\)

\(B=\sqrt{19-8\sqrt{3}}\\ =\sqrt{16-2\cdot4\cdot\sqrt{3}+3}\\ =\sqrt{\left(4-\sqrt{3}\right)^2}\\ =4-\sqrt{3}\)

\(C=\sqrt{21-4\sqrt{5}}\\ =\sqrt{20-2\cdot2\sqrt{5}+1}\\ =\sqrt{\left(2\sqrt{5}\right)^2-2\cdot2\sqrt{5}\cdot1+1}\\ =\sqrt{\left(2\sqrt{5}-1\right)^2}\\ =2\sqrt{5}-1\)

Câu D mình làm chưa ra, sorry :<