Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f,\sqrt{\dfrac{3-\sqrt{5}}{2-\sqrt{3}}}\\ =\sqrt{\dfrac{\left(3-\sqrt{5}\right)\left(2+\sqrt{3}\right)}{4-3}}\\ =\sqrt{\left(3-\sqrt{5}\right)\left(2+\sqrt{3}\right)}\\ =\sqrt{\dfrac{\left(6-2\sqrt{5}\right)\left(4+2\sqrt{3}\right)}{4}}\\ =\dfrac{\left(\sqrt{5}-1\right)\left(\sqrt{3}+1\right)}{2}\)
\(a,\sqrt{3+\sqrt{5}}\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)\\ =\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{2}\left(\sqrt{5}+1\right)\\ =\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}.\sqrt{6-2\sqrt{5}}.\left(\sqrt{5}+1\right)\\ =\sqrt{9-5}.\sqrt{\left(\sqrt{5}-1\right)^2}.\left(\sqrt{5}+1\right)\\ =2\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\\ =2.4\\ =8\)
I: Rút gọn
\(A=\sqrt{7-4\sqrt{3}}\\ =\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\\ =\sqrt{\left(2-\sqrt{3}\right)^2}\\ =2-\sqrt{3}\)
\(B=\sqrt{19-8\sqrt{3}}\\ =\sqrt{16-2\cdot4\cdot\sqrt{3}+3}\\ =\sqrt{\left(4-\sqrt{3}\right)^2}\\ =4-\sqrt{3}\)
\(C=\sqrt{21-4\sqrt{5}}\\ =\sqrt{20-2\cdot2\sqrt{5}+1}\\ =\sqrt{\left(2\sqrt{5}\right)^2-2\cdot2\sqrt{5}\cdot1+1}\\ =\sqrt{\left(2\sqrt{5}-1\right)^2}\\ =2\sqrt{5}-1\)
Câu D mình làm chưa ra, sorry :<
1. Đặt A =\(\sqrt{\frac{129}{16}+\sqrt{2}}\)
\(\sqrt{16}\)A = \(\sqrt{129+16\sqrt{2}}\)
4A = \(\sqrt{\left(8\sqrt{2}+1\right)^2}\)
4A = \(8\sqrt{2}+1\)
⇒ A = \(\frac{\text{}8\sqrt{2}+1}{4}\)= \(2\sqrt{2}\) + \(\frac{1}{4}\)
2. Đặt B = \(\sqrt{\frac{289+4\sqrt{72}}{16}}\)
\(\sqrt{16}\)B = \(\sqrt{289+24\sqrt{2}}\)
4B = \(\sqrt{\left(12\sqrt{2}+1\right)^2}\)
4B = \(12\sqrt{2}+1\)
⇒ B = \(\frac{12\sqrt{2}+1}{4}\)= \(3\sqrt{2}+\frac{1}{4}\)
3. \(\sqrt{2-\sqrt{3}}\). \(\left(\sqrt{6}+\sqrt{2}\right)\)
= \(\sqrt{2-\sqrt{3}}\). \(\sqrt{2}.\left(\sqrt{3}+1\right)\)
= \(\sqrt{4-2\sqrt{3}}\) . \(\left(\sqrt{3}+1\right)\)
= \(\sqrt{\left(\sqrt{3}-1\right)^2}\) . \(\left(\sqrt{3}+1\right)\)
= \(\left(\sqrt{3}-1\right)\). \(\left(\sqrt{3}+1\right)\)
= \(\left(\sqrt{3}\right)^2\) - 12
= 3 - 1
= 2
4. \(\left(\sqrt{21}+7\right)\). \(\sqrt{10-2\sqrt{21}}\)
= \(\left(\sqrt{21}+7\right)\) . \(\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
= \(\sqrt{7}\left(\sqrt{3}+\sqrt{7}\right)\) . \(\left(\sqrt{7}-\sqrt{3}\right)\)
= \(\sqrt{7}\) \(\left[\left(\sqrt{7}\right)^2-\left(\sqrt{3}\right)^2\right]\)
= \(\sqrt{7}\) . (7 - 3)
= 4\(\sqrt{7}\)
5. \(2.\left(\sqrt{10}-\sqrt{2}\right)\). \(\sqrt{4+\sqrt{6-2\sqrt{5}}}\)
= \(2.\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{4+\sqrt{5}-1}\)
= \(2.\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{3+\sqrt{5}}\)
= \(\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{12+4\sqrt{5}}\)
= \(\left(\sqrt{10}-\sqrt{2}\right)\) . \(\left(\sqrt{10}+\sqrt{2}\right)\)
= \(\left(\sqrt{10}\right)^2-\left(\sqrt{2}\right)^2\)
= 10 - 2
= 8
6. \(\left(4\sqrt{2}+\sqrt{30}\right)\). \(\left(\sqrt{5}-\sqrt{3}\right)\). \(\sqrt{4-\sqrt{15}}\)
= \(\sqrt{2}\)\(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\sqrt{4-\sqrt{15}}\)
= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\sqrt{8-2\sqrt{15}}\)
= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\)
= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)^2\)
= \(\left(4+\sqrt{15}\right)\). \(\left(8-2\sqrt{15}\right)\)
= 32 - \(8\sqrt{15}\) + \(8\sqrt{15}\) - 30
= 2
7. \(\left(7-\sqrt{14}\right)\) . \(\sqrt{9-2\sqrt{14}}\)
= \(\sqrt{7}\) \(\left(\sqrt{7}-\sqrt{2}\right)\). \(\left(\sqrt{7}-\sqrt{2}\right)\)
= \(\sqrt{7}\). \(\left(\sqrt{7}-\sqrt{2}\right)^2\)
= \(\sqrt{7}\) . \(\left(9-2\sqrt{14}\right)\)
= 9\(\sqrt{7}\) - 14\(\sqrt{2}\)
TICK MÌNH NHA!
b) Ta có: \(\left(\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\right)\cdot\left(15+2\sqrt{6}\right)\)
\(=\left(\frac{5+2\sqrt{6}+2\left(5-2\sqrt{6}\right)}{\left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right)}\right)\cdot\left(15+2\sqrt{6}\right)\)
\(=\frac{5+2\sqrt{6}+10-4\sqrt{6}}{25-24}\cdot\left(15+2\sqrt{6}\right)\)
\(=\left(15-2\sqrt{6}\right)\cdot\left(15+2\sqrt{6}\right)\)
\(=15^2-\left(2\sqrt{6}\right)^2\)
\(=225-24=201\)
a) Ta có: \(\left(\sqrt{6}+\sqrt{2}\right)\cdot\left(\sqrt{3}-2\right)\cdot\left(\sqrt{2+\sqrt{3}}\right)\)
\(=\sqrt{2}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\cdot\sqrt{2+\sqrt{3}}\)
\(=\sqrt{4+2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)
\(=\sqrt{3+2\cdot\sqrt{3}\cdot1+1}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)
\(=\left|\sqrt{3}+1\right|\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)
\(=\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)(Vì \(\sqrt{3}>1>0\))
\(=\left(4+2\sqrt{3}\right)\cdot\left(\sqrt{3}-2\right)\)
\(=2\cdot\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)\)
\(=2\cdot\left(3-4\right)\)
\(=-2\)
b) Ta có: \(\sqrt{2}\cdot\left(\sqrt{2-\sqrt{3}}\right)\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\cdot\left(\sqrt{3}+1\right)\)
\(=\left|\sqrt{3}-1\right|\cdot\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)(Vì \(\sqrt{3}>1\))
\(=3-1=2\)
c) Ta có: \(\left(\sqrt{10}-\sqrt{6}\right)\cdot\left(\sqrt{4-\sqrt{15}}\right)\)
\(=\sqrt{2}\cdot\sqrt{4-\sqrt{15}}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left|\sqrt{5}-\sqrt{3}\right|\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)(Vì \(\sqrt{5}>\sqrt{3}\))
\(=8-2\sqrt{15}\)
d) Ta có: \(\left(\sqrt{3}-\sqrt{12}\right)\cdot\left(\sqrt{5+2\sqrt{6}}\right)\)
\(=\sqrt{3}\cdot\left(1-2\right)\cdot\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)
\(=-\sqrt{3}\cdot\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=-\sqrt{3}\cdot\left|\sqrt{3}+\sqrt{2}\right|\)
\(=-\sqrt{3}\cdot\left(\sqrt{3}+\sqrt{2}\right)\)(Vì \(\sqrt{3}>\sqrt{2}>0\))
\(=-3-\sqrt{6}\)
e) Ta có: \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}-\sqrt{2}\right)\cdot\left(2+\sqrt{3}\right)\)
\(=\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\cdot\left(2+\sqrt{3}\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)
\(=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)
\(=\left|\sqrt{3}-1\right|\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)\left(\sqrt{3}+2\right)\)(Vì \(\sqrt{3}>1\))
\(=\frac{\left(4-2\sqrt{3}\right)\left(4+2\sqrt{3}\right)}{2}\)
\(=\frac{16-12}{2}=\frac{4}{2}=2\)
f) Ta có: \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+2\cdot2\cdot\sqrt{3}+3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left|2+\sqrt{3}\right|}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)(Vì \(2>\sqrt{3}>0\))
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{25-2\cdot5\cdot\sqrt{3}+3}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left|5-\sqrt{3}\right|}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)(Vì \(5>\sqrt{3}\))
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+\sqrt{25}}\)
\(=\sqrt{4+5}=\sqrt{9}=3\)
a)
\(A=\sqrt{26+15\sqrt{3}}=\sqrt{\frac{52+30\sqrt{3}}{2}}=\sqrt{\frac{27+25+2\sqrt{27.25}}{2}}\)
\(=\sqrt{\frac{(\sqrt{27}+\sqrt{25})^2}{2}}=\frac{\sqrt{27}+\sqrt{25}}{\sqrt{2}}=\frac{3\sqrt{3}+5}{\sqrt{2}}=\frac{3\sqrt{6}+5\sqrt{2}}{2}\)
b)
\(B\sqrt{2}=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)
\(=\sqrt{7+1+2\sqrt{7}}-\sqrt{7+1-2\sqrt{7}}-2\)
\(=\sqrt{(\sqrt{7}+1)^2}-\sqrt{(\sqrt{7}-1)^2}-2=\sqrt{7}+1-(\sqrt{7}-1)-2=0\)
\(\Rightarrow B=0\)
c)
\(C=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=\sqrt{3+5-2\sqrt{3.5}}-\sqrt{3+5+2\sqrt{3.5}}\)
\(=\sqrt{(\sqrt{5}-\sqrt{3})^2}-\sqrt{(\sqrt{5}+\sqrt{3})^2}=(\sqrt{5}-\sqrt{3})-(\sqrt{5}+\sqrt{3})=-2\sqrt{3}\)
d)
\(D=(\sqrt{6}-2)(5+2\sqrt{6})\sqrt{5-2\sqrt{6}}\)
\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(2+3+2\sqrt{2.3})\sqrt{2+3-2\sqrt{2.3}}\)
\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})^2\sqrt{(\sqrt{3}-\sqrt{2})^2}\)
\(=\sqrt{2}(\sqrt{3}-\sqrt{2})^2(\sqrt{3}+\sqrt{2})^2=\sqrt{2}[(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})]^2\)
\(=\sqrt{2}.1^2=\sqrt{2}\)
e)
\(E=(\sqrt{10}-\sqrt{2})\sqrt{3+\sqrt{5}}=(\sqrt{5}-1).\sqrt{2}.\sqrt{3+\sqrt{5}}\)
\(=(\sqrt{5}-1)\sqrt{6+2\sqrt{5}}=(\sqrt{5}-1)\sqrt{5+1+2\sqrt{5.1}}\)
\(=(\sqrt{5}-1)\sqrt{(\sqrt{5}+1)^2}=(\sqrt{5}-1)(\sqrt{5}+1)=4\)
f)
\(F=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20+9-2\sqrt{20.9}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{(\sqrt{20}-3)^2}}}=\sqrt{\sqrt{5}-\sqrt{3-(\sqrt{20}-3)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5+1-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{(\sqrt{5}-1)^2}}=\sqrt{\sqrt{5}-(\sqrt{5}-1)}=\sqrt{1}=1\)
1: \(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\left(2+\sqrt{3}\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\left(2+\sqrt{3}\right)\)
\(=2\left(2+\sqrt{3}\right)=4+2\sqrt{3}\)
2: \(=\sqrt{6+2\sqrt{5-2\sqrt{3}-1}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
3: \(=\left(\sqrt{7}-\sqrt{2}+\sqrt{7}+\sqrt{2}\right)^2=\left(2\sqrt{7}\right)^2=28\)
a,\(\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}\)
\(=\sqrt{2}\left(\sqrt{3}+1\right)\sqrt{2-\sqrt{3}}\)
\(=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}\)
\(=\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\)
\(=3-1\)
\(=2\)
b, \(\left(\sqrt{4+\sqrt{15}}-\sqrt{16-3\sqrt{15}}\right)\left(\sqrt{3}+\sqrt{5}\right)\)
\(=\frac{\sqrt{8+2\sqrt{15}}-\sqrt{32-6\sqrt{15}}}{\sqrt{2}}.\left(\sqrt{3}+\sqrt{5}\right)\)
\(=\frac{\sqrt{3+2\sqrt{3}.\sqrt{5}+5}-\sqrt{27-2.3\sqrt{3}.\sqrt{5}+5}}{\sqrt{2}}\left(\sqrt{3}+\sqrt{5}\right)\)
\(=\frac{\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{3}-\sqrt{5}\right)^2}}{\sqrt{2}}\left(\sqrt{3}+\sqrt{5}\right)\)
\(=\frac{\sqrt{3}+\sqrt{5}-3\sqrt{3}+\sqrt{5}}{\sqrt{2}}\left(\sqrt{3}+\sqrt{5}\right)\)
\(=\frac{2\sqrt{5}-2\sqrt{3}}{\sqrt{2}}\left(\sqrt{5}+\sqrt{3}\right)\)
\(=\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)\)
\(=\sqrt{2}\left(5-3\right)\)
\(=2\sqrt{2}\)