Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{24+16\sqrt{2}}-\sqrt{24-16\sqrt{2}}=\sqrt{8\left(3+2\sqrt{2}\right)}-\sqrt{8\left(3-2\sqrt{2}\right)}\)
\(=\sqrt{8}.\left[\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}\right]=\sqrt{8}.\left(\sqrt{2}+1-\sqrt{2}+1\right)=2\sqrt{8}=4\sqrt{2}\)
\(8\sqrt{2}\left(\sqrt{24+16\sqrt{2}}-\sqrt{24-16\sqrt{2}}\right)\)
\(=8\sqrt{2}\left(\sqrt{16+2.4.\sqrt{8}+8}-\sqrt{16-2.4\sqrt{8}+8}\right)\)
\(=8\sqrt{2}\left(\sqrt{\left(4+\sqrt{8}\right)^2}-\sqrt{\left(4-\sqrt{8}\right)^2}\right)\)
\(=8\sqrt{2}\left(4+\sqrt{8}-4+\sqrt{8}\right)\)
\(=8\sqrt{2}.2\sqrt{8}\)
= 64
ta có\(8\sqrt{2}\cdot\left(\sqrt{24+16\sqrt{2}}-\sqrt{24-16\sqrt{2}}\right)=8\sqrt{2}\cdot\left(\sqrt{\left(4+\sqrt{8}\right)^2}-\sqrt{\left(4-\sqrt{8}\right)^2}\right)=8\sqrt{2}\cdot\left(4+\sqrt{8}-4+\sqrt{8}\right)=8\sqrt{2}\cdot2\sqrt{8}=64\)vây..................
A=\(\sqrt{\left(4+\sqrt{8}\right)^2}\)\(-\sqrt{\left(4-\sqrt{8}\right)^2}\)=\(4+\sqrt{8}\)\(-\left(4-\sqrt{8}\right)\)=\(2\sqrt{8}\)
Giờ mình chỉ giải đc câu a thôi để hồi nao mình rảnh giải típ cho
\(\sqrt{24-16\sqrt{2}}+\sqrt{12-8\sqrt{2}}=\dfrac{\sqrt{32-2.4.4\sqrt{2}+16}+\sqrt{12-2.4.2\sqrt{2}+16}}{\sqrt{2}}=\dfrac{4\sqrt{2}-4+4-2\sqrt{2}}{\sqrt{2}}=\dfrac{2\sqrt{2}}{\sqrt{2}}=1\)
Lời giải:
\(A=\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)
\(=\sqrt{10+2\sqrt{2}(\sqrt{3}+\sqrt{5})+2\sqrt{15}}=\sqrt{2+(3+5+2\sqrt{15})+2\sqrt{2}(\sqrt{3}+\sqrt{5})}\)
\(=\sqrt{2+(\sqrt{3}+\sqrt{5})^2+2\sqrt{2}(\sqrt{3}+\sqrt{5})}\)
\(=\sqrt{(\sqrt{2}+\sqrt{3}+\sqrt{5})^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)
\(2B=2.\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=2.\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})+(\sqrt{4}+\sqrt{6}+\sqrt{8})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=2.\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})+\sqrt{2}(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=2(1+\sqrt{2})\)
Do đó:
\(A-2B=\sqrt{3}+\sqrt{5}-(2+\sqrt{2})>\sqrt{2}+\sqrt{4}-(2+\sqrt{2})=0\)
\(\Rightarrow A>2B\)
22) \(\frac{1}{\sqrt{5}+\sqrt{2}}+\frac{1}{\sqrt{5}-\sqrt{2}}\)
\(=\frac{\left(\sqrt{5}-\sqrt{2}\right)+\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}\)
\(=\frac{2\sqrt{5}}{\sqrt{5^2}-\sqrt{2^2}}\)
\(=\frac{2\sqrt{5}}{5-2}=\frac{2\sqrt{5}}{3}\)
a/ \(\sqrt[4]{17+12\sqrt{2}}-\sqrt{2}\)
= \(\sqrt[4]{9+2×3×2\sqrt{2}+8}-\sqrt{2}\)
= \(\sqrt{3+2\sqrt{2}}-\sqrt{2}\)
= \(\sqrt{2}+1-\sqrt{2}\)= 1
Mấy câu còn lại giải tương tự
\(\sqrt{24+16\sqrt{2}}-\sqrt{24-16\sqrt{2}}\)
\(=\sqrt{\left(4+2\sqrt{2}\right)^2}-\sqrt{\left(4-2\sqrt{2}\right)^2}\)
\(=4+2\sqrt{2}-4+2\sqrt{2}\)
\(=4\sqrt{2}\)
Giải:
\(\sqrt{24+16\sqrt{2}}-\sqrt{24-16\sqrt{2}}\)
\(=\sqrt{8+2.4.2\sqrt{2}+16}-\sqrt{16-2.4.2\sqrt{2}+8}\)
\(=\sqrt{\left(2\sqrt{2}+4\right)^2}-\sqrt{\left(4-2\sqrt{2}\right)^2}\)
\(=2\sqrt{2}+4-\left(4-2\sqrt{2}\right)\)
\(=2\sqrt{2}+4-4+2\sqrt{2}\)
\(=4\sqrt{2}\)
Vậy ...