\(\sqrt{2+√3}\)-\(\sqrt{2-√3}\). Help me p...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

\(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}=\sqrt{\frac{1}{2}}\left(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\right)=\sqrt{\frac{1}{2}}\left(\sqrt{1+2\sqrt{3}+3}-\sqrt{3-2\sqrt{3}+1}\right)=\sqrt{\frac{1}{2}}\left(\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{\frac{1}{2}}\left(1+\sqrt{3}-\sqrt{3}+1\right)=\frac{1}{\sqrt{2}}.2=\sqrt{2}\)

8 tháng 8 2019

A = \(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)

\(=\frac{\sqrt{3+2.\sqrt{3}.1+1}-\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}\)

\(\sqrt{3}+1>0;\sqrt{3}-1>\sqrt{1}-1=0\) nên:

\(A=\frac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Đúng ko ta?:3

23 tháng 1 2020

\(\begin{array}{l} {\left( {{x^2} + x} \right)^2} + 4\left( {{x^2} + x} \right) = 12\\ \Leftrightarrow {\left( {{x^2} + x} \right)^2} + 2\left( {{x^2} + x} \right).2 + {2^2} = 12 + 4\\ \Leftrightarrow {\left( {{x^2} + x + 2} \right)^2} = 16\\ \Leftrightarrow \left[ \begin{array}{l} {x^2} + x + 2 = 4\\ {x^2} + x + 2 = - 4 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} {x^2} + x - 2 = 0 \Leftrightarrow \left[ \begin{array}{l} x = 1\\ x = - 2 \end{array} \right.\\ {x^2} + x + 6 = 0\left( {VN} \right) \end{array} \right. \end{array}\)

22 tháng 1 2020

b) \(x-\sqrt{2}+3.\left(x^2-2\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)+3.\left[x^2-\left(\sqrt{2}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)+3.\left(x-\sqrt{2}\right).\left(x+\sqrt{2}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right).\left(1+3+x+\sqrt{2}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right).\left(4+x+\sqrt{2}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right).\left(x+4+\sqrt{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2}=0\\x+4+\sqrt{2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0+\sqrt{2}\\x=0-4-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-4-\sqrt{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{\sqrt{2};-4-\sqrt{2}\right\}.\)

Chúc bạn học tốt!

Sorry thiếu với \(\forall m\inℝ\)

với cả  : P(x) = ax2 + bx +c , a khác 0

8 tháng 8 2019

ủa bn ơi

bài này hình như bằng 0 mà

NV
24 tháng 4 2020

ĐKXĐ: \(-\frac{1}{3}\le x\le2\)

\(\Leftrightarrow\sqrt{3x+1}+\sqrt{2-x}=3\)

\(\Leftrightarrow2x+3+2\sqrt{\left(3x+1\right)\left(2-x\right)}=9\)

\(\Leftrightarrow\sqrt{-3x^2+5x+2}=3-x\)

\(\Leftrightarrow-3x^2+5x+2=x^2-6x+9\)

\(\Leftrightarrow4x^2-11x+7=0\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{7}{4}\end{matrix}\right.\)

5 tháng 3 2018

\(\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{t^2+t-6}\)(đkxđ: t khác 2, t khác -3)

<=>\(\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{\left(t-2\right)\left(t+3\right)}\)

<=>\(\dfrac{\left(t+3\right)^2}{\left(t-2\right)\left(t+3\right)}+\dfrac{\left(t-2\right)^2}{\left(t+3\right)\left(t-2\right)}=\dfrac{5t+15}{\left(t-2\right)\left(t+3\right)}\)

=>t^2+6t+9+t^2-4t+4=5t+15

<=>2t^2-2t-5t=15-9-4=0

<=>2t^2-7t=0

<=> t(2t-7)=0

<=>t=0

2t-7=0<=>t=-7/2

vậy.....

8 tháng 10 2017

đúng đề ko bạn sao mk giải ko ra

8 tháng 10 2017

mk thấy đề như thế mak hay cậu thử đổi dấu xem sao

4 tháng 7 2019

Bài 1:

a) \(M=x^2+x+1\)

\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4};\forall x\)

Hay \(M\ge\frac{3}{4};\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\)

                         \(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(MIN\)\(M=\frac{3}{4}\)\(\Leftrightarrow x=\frac{-1}{2}\)

b) \(N=3-2x-x^2\)

\(=-x^2-2x+3\)

\(=-\left(x^2+2x+1\right)+4\)

\(=-\left(x+1\right)^2+4\)

Vì \(-\left(x+1\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x+1\right)^2+4\le0+4;\forall x\)

Hay \(N\le4;\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+1=0\)

                        \(\Leftrightarrow x=-1\)

Vậy MAX \(N=4\)\(\Leftrightarrow x=-1\)

Bài 2:

Vì a chia 3 dư 1 nên a có dạng \(3k+1\left(k\in N\right)\)

Vì b chia 3 dư 2 nên b có dạng \(3t+2\left(t\in N\right)\)

Ta có: \(ab=\left(3k+1\right)\left(3t+2\right)\)

\(=\left(3k+1\right).3t+\left(3k+1\right).2\)

\(=9kt+3t+6k+2\)

\(=3.\left(3kt+t+2k\right)+2\)chia 3 dư 2 .

\(\)

4 tháng 7 2019

1a) Ta có: M = x2 + x + 1 = (x2 + x + 1/4)  + 3/4 = (x + 1/2)2  + 3/4

Ta luôn có: (x + 1/2)2 \(\ge\)\(\forall\)x

=> (x + 1/2)2 + 3/4 \(\ge\)3/4 \(\forall\)x

Dấu "=" xảy ra khi : x + 1/2 = 0 <=> x = -1/2

Vậy Mmin = 3/4 tại x = -1/2

b) Ta có: N = 3 - 2x - x2 = -(x2 + 2x + 1) + 4 = -(x + 1)2 + 4

Ta luôn có: -(x + 1)2 \(\le\)\(\forall\)x

=> -(x + 1)2 + 4 \(\le\)\(\forall\)x

Dấu "=" xảy ra khi : x + 1 = 0 <=> x = -1

Vậy Nmax = 4 tại x = -1

19 tháng 12 2018

\(a,6x^2-9x=3x\left(x-3\right)\)

\(b,x^3-2x^2-3x+6\)

\(=\left(x^3-2x^2\right)-\left(3x-6\right)\)

\(=x^2\left(x-2\right)-3\left(x-2\right)\)

\(=\left(x^2-3\right)\left(x-2\right)\)

\(e,2x\left(x-y\right)-3y\left(x-y\right)\)

\(=\left(2x-3y\right)\left(x-y\right)\)

19 tháng 12 2018

a) 6x2 - 9x

= 3x (2x - 3)

b) x3 - 2x2 - 3x + 6

= x2(x - 2) - 3 (x - 2)

=(x - 2) (x2 - 3)

c) x2 - 4x + 4 - 9y2

= (x - 2)2 - 9y2

=(x - 2 - 3y)(x - 2 + 3y)

e) 2x(x - y) - 3y(x - y)

= (x - y)(2x - 3y)

xin lỗi mình học ngu nên không biết làm nhìu nha