Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{19+\sqrt{136}}\) -\(\sqrt{19-\sqrt{136}}\)
= \(\sqrt{19+2\sqrt{34}}\) - \(\sqrt{19-2\sqrt{34}}\)
= \(\sqrt{\left(\sqrt{17}+\sqrt{2}\right)^2}\) - \(\sqrt{\left(\sqrt{17}-\sqrt{2}\right)^2}\)
= \(\left|\sqrt{17}+\sqrt{2}\right|-\left|\sqrt{17}-\sqrt{2}\right|\)
= \(\sqrt{17}+\sqrt{2}-\sqrt{17}+\sqrt{2}\)
= \(2\sqrt{2}\)
\(\sqrt{13-4\sqrt{3}}+\sqrt{13+4\sqrt{3}}=2\sqrt{3}-1+2\sqrt{3}+1=4\sqrt{3}\)
\(\sqrt{19-6\sqrt{2}}-\sqrt{19+6\sqrt{2}}=3\sqrt{2}-1-3\sqrt{2}-1=-2\)
\(\sqrt{19}-\sqrt{17}=\dfrac{2}{\sqrt{19}+\sqrt{17}}\)
\(\sqrt{21}-\sqrt{19}=\dfrac{2}{\sqrt{21}+\sqrt{19}}\)
mà \(\sqrt{17}+\sqrt{19}< \sqrt{21}+\sqrt{19}\)
nên \(\sqrt{19}-\sqrt{17}>\sqrt{21}-\sqrt{19}\)
b, t = \(\sqrt{3- \sqrt{5}}\)(3 +\(\sqrt{5}\)).(\(\sqrt{10}\)-\(\sqrt{2}\))
t = \(\sqrt{3- \sqrt{5}}\)(3 +\(\sqrt{5}\)).\(\sqrt{2}\)(\(\sqrt{5}\) -1)
t = (\(\sqrt{5}\) -1).(\(\sqrt{5}\) -1).(3 +\(\sqrt{5}\))
t = (\(\sqrt{5}\) -1)2.(3 +\(\sqrt{5}\))
t = (5 - \(2\sqrt{5}\)+1).(3 +\(\sqrt{5}\))
t = 15 + \(5\sqrt{5}\) \(-6\sqrt{5}\)-10+1+\(\sqrt{5}\)
t = 6
\(A=4-\sqrt{21-8\sqrt{5}}=4-\sqrt{4^2-8\sqrt{5}+\left(\sqrt{5}\right)^2}.\)
\(A=4-\sqrt{\left(4-\sqrt{5}\right)^2}=4-\left(4-\sqrt{5}\right)\)
=> \(A=\sqrt{5}\)
\(\sqrt{19+8\sqrt{3}}-\sqrt{19-8\sqrt{3}}\)
\(=\sqrt{4^2+8\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{4^2-8\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{3}+4\right)^2}-\sqrt{\left(\sqrt{3}-4\right)^2}\)
\(=\left|\sqrt{3}+4\right|-\left|\sqrt{3}-4\right|\)
\(=\sqrt{3}+4-\sqrt{3}+4\)
\(=8\)
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
\(=\sqrt{\left(\sqrt{x-1}\right)^2+2\sqrt{x-1}+1^2}+\sqrt{\left(\sqrt{x-1}\right)^2-2\sqrt{x-1}+1^2}\)
\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
\(=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)
\(\sqrt{10+\sqrt{19}}+\sqrt{10-\sqrt{19}}\)
\(=\sqrt{10^2-\left(\sqrt{19}\right)^2}\)
\(=\sqrt{100-19}\)
= \(\sqrt{81}\)
\(=9\)
\(\sqrt{10+\sqrt{19}}+\sqrt{10-\sqrt{19}}\)
=\(\sqrt{10^2-\left(\sqrt{19}\right)^2}\)
=\(\sqrt{100-19}\)
=\(\sqrt{81}\)
= 9 (đpcm)
\(\sqrt{19+\sqrt{136}}-\sqrt{19-\sqrt{136}}=\sqrt{17+2\sqrt{17.2}+2}-\sqrt{17-2\sqrt{17.2}+2}\)
\(=\sqrt{\left(\sqrt{17}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{17}-\sqrt{2}\right)^2}=\sqrt{17}+\sqrt{2}-\sqrt{17}+\sqrt{2}\)
\(=2\sqrt{2}\)