K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 : \(\sqrt{49-12\sqrt{5}}+\sqrt{49+12\sqrt{5}}\)

\(=\sqrt{45-4\sqrt{45}+4}+\sqrt{45+4\sqrt{45}+4}\)

\(=\sqrt{\left(\sqrt{45}-2\right)^2}+\sqrt{\left(\sqrt{45}+2\right)^2}\)

\(=\sqrt{45}-2+\sqrt{45}+2=2\sqrt{45}\)

Bài 2 : \(\sqrt{29+12\sqrt{5}}+\sqrt{29-12\sqrt{5}}\)

\(=\sqrt{20+6\sqrt{20}+9}+\sqrt{20-6\sqrt{20}+9}\)

\(=\sqrt{\left(\sqrt{20}+3\right)^2}+\sqrt{\left(\sqrt{20}-3\right)^2}\)

\(=\sqrt{20}+3+\sqrt{20}-3=2\sqrt{20}\)

Bài 3 : \(\sqrt{31-12\sqrt{3}}+\sqrt{31+12\sqrt{3}}\)

\(=\sqrt{27-4\sqrt{27}+4}+\sqrt{27+4\sqrt{27}+4}\)

\(=\sqrt{\left(\sqrt{27}-2\right)^2}+\sqrt{\left(\sqrt{27}+2\right)^2}\)

\(=\sqrt{27}-2+\sqrt{27}+2=2\sqrt{27}\)

Chúc bạn học tốt

1 tháng 8 2018

4 , Ta có :

\(\sqrt{39-12\sqrt{3}}-\sqrt{39+12\sqrt{3}}\)

\(=\sqrt{3-2.6.\sqrt{3}+6^2}-\sqrt{3+2.6.\sqrt{3}+6^2}\)

\(=\sqrt{\left(\sqrt{3}-6\right)^2}-\sqrt{\left(\sqrt{3}+6\right)^2}\)

\(=\left|\sqrt{3}-6\right|-\left|\sqrt{3}+6\right|\)

\(=6-\sqrt{3}-\sqrt{3}-6\)

\(=-2\sqrt{3}\)

17 tháng 12 2021

\(a,=4\sqrt{6}-15\sqrt{6}+\sqrt{\left(2+\sqrt{6}\right)^2}=-11\sqrt{6}+2+\sqrt{6}=2-10\sqrt{6}\\ b,=\dfrac{\sqrt{3}\left(\sqrt{6}-2\right)}{\sqrt{6}-2}+\dfrac{4\left(\sqrt{3}-1\right)}{2}+\left|3\sqrt{3}-12\right|=\sqrt{3}+2\sqrt{3}-2+12-3\sqrt{3}=10\)

a) \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)

\(=2\sqrt{5}+2+\sqrt{5}-2\)

\(=3\sqrt{5}\)

b) \(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)

\(=3-2\sqrt{2}+2\sqrt{2}-1\)

=2

c) \(\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}\)

\(=2-\sqrt{2}+3\sqrt{2}-2\)

\(=2\sqrt{2}\)

25 tháng 7 2018

\(\left(\sqrt{12}-6\sqrt{3}+\sqrt{24}\right)\sqrt{6}-\left(5\sqrt{\dfrac{1}{12}}+12\right)\)

\(=\left(2\sqrt{3}-6\sqrt{3}+2\sqrt{6}\right)\sqrt{6}-\left(\dfrac{5\sqrt{3}}{6}+12\right)\)

\(=6\sqrt{2}-18\sqrt{2}+12-\left(\dfrac{5\sqrt{3}+72}{6}\right)\)

\(=-12\sqrt{2}+12-\dfrac{5\sqrt{3}+72}{6}\)

\(=\dfrac{-72\sqrt{2}+72-5\sqrt{3}-72}{6}=\dfrac{5\sqrt{3}+72\sqrt{2}}{6}\simeq-18,4139\)

Ta có: \(-14,5\sqrt{2}\simeq-20,506\)

\(VT\ne VP\)

Đẳng thức không xảy ra

29 tháng 7 2021

câu đầu có \(3-12\sqrt{6}< 0\) nên không căn được nên đề bạn sai

\(\sqrt{31-8\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)

\(=\sqrt{4^2-2.4.\sqrt{15}+\left(\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}\right)^2-2.\sqrt{15}.3+3^2}\)

\(=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}=\left|4-\sqrt{15}\right|+\left|\sqrt{15}-3\right|\)

\(=4-\sqrt{15}+\sqrt{15}-3=1\)

\(\sqrt{49-5\sqrt{96}}-\sqrt{49+5\sqrt{96}}=\sqrt{49-20\sqrt{6}}-\sqrt{49+20\sqrt{6}}\)

\(=\sqrt{5^2-2.5.2\sqrt{6}+\left(2\sqrt{6}\right)^2}-\sqrt{5^2+2.5.4\sqrt{6}+\left(2\sqrt{6}\right)^2}\)

\(=\sqrt{\left(5-2\sqrt{6}\right)^2}-\sqrt{\left(5+2\sqrt{6}\right)^2}=\left|5-2\sqrt{6}\right|-\left|5+2\sqrt{6}\right|\)

\(=5-2\sqrt{6}-5-2\sqrt{6}=-4\sqrt{6}\)

\(\sqrt{31-8\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)

\(=4-\sqrt{15}+\sqrt{15}-3\)

=1

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Cần gấp thì bạn cũng nên viết đầy đủ đề bài nhé.

** Bài toán rút gọn**

Lời giải:

\(\sqrt{17-12\sqrt{2}}=\sqrt{17-2\sqrt{72}}=\sqrt{9-2\sqrt{8.9}+8}=\sqrt{(\sqrt{9}-\sqrt{8})^2}\)

\(=\sqrt{9}-\sqrt{8}=3-2\sqrt{2}\)

\(\sqrt{24-8\sqrt{8}}=\sqrt{24-2\sqrt{128}}=\sqrt{16-2\sqrt{16.8}+8}=\sqrt{(\sqrt{16}-\sqrt{8})^2}\)

\(=\sqrt{16}-\sqrt{8}=4-2\sqrt{2}\)

\(\Rightarrow \sqrt{17-12\sqrt{2}}-\sqrt{24-8\sqrt{8}}=(3-2\sqrt{2})-(4-2\sqrt{2})=-1\)

--------------------

\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}=\sqrt{17-12\sqrt{2}}+\sqrt{17+12\sqrt{2}}\)

\(=\sqrt{8-2\sqrt{8.9}+9}+\sqrt{8+2\sqrt{8.9}+9}\)

\(=\sqrt{(\sqrt{8}-\sqrt{9})^2}+\sqrt{(\sqrt{8}+\sqrt{9})^2}\)

\(=|\sqrt{8}-\sqrt{9}|+|\sqrt{8}+\sqrt{9}|=3-2\sqrt{2}+3+2\sqrt{2}=6\)

----------------------

\(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{9+2\sqrt{9.2}+2}-\sqrt{9-2\sqrt{9.2}+2}\)

\(=\sqrt{(\sqrt{9}+\sqrt{2})^2}-\sqrt{(\sqrt{9}-\sqrt{2})^2}\)

\(=|\sqrt{9}+\sqrt{2}|-|\sqrt{9}-\sqrt{2}|=3+\sqrt{2}-(3-\sqrt{2})=2\sqrt{2}\)


 

NV
29 tháng 7 2021

\(\sqrt{17-12\sqrt{2}}-\sqrt{24-8\sqrt{8}}=\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(4-2\sqrt{2}\right)^2}\)

\(=\left|3-2\sqrt{2}\right|-\left|4-2\sqrt{2}\right|=3-2\sqrt{2}-4+2\sqrt{2}\)

\(=-1\)

\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}=\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3+2\sqrt{2}\right)^2}\)

\(=\left|3-2\sqrt{2}\right|+\left|3+2\sqrt{2}\right|=3-2\sqrt{2}+3+2\sqrt{2}\)

\(=6\)

\(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=\left|3+\sqrt{2}\right|-\left|3-\sqrt{2}\right|=3+\sqrt{2}-3+\sqrt{2}\)

\(=2\sqrt{2}\)

11 tháng 7 2018

cho cách làm dạng bài này luôn. Chỗ nào chưa hiểu thì nói tớ sẽ giải thích thêm (cần góp ý để hoàn thiện thêm phần hướng dẫn đó mà. Cảm ơn cậu).

Phương Nam Phim (à quên, Từ Hạ) hân hạnh giới thiệu bộ phim...

24 tháng 8 2023

\(\dfrac{\sqrt{12}-6}{\sqrt{8}-\sqrt{24}}-\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{4}{1-\sqrt{7}}\)

\(=\dfrac{2\sqrt{3}\cdot\left(1-\sqrt{3}\right)}{2\sqrt{2}\cdot\left(1-\sqrt{3}\right)}-\dfrac{\sqrt{3}\cdot\left(\sqrt{3}+1\right)}{\sqrt{3}}+\dfrac{4\left(1+\sqrt{7}\right)}{\left(1-\sqrt{7}\right)\left(1+\sqrt{7}\right)}\)

\(=\dfrac{2\sqrt{3}}{2\sqrt{2}}-\left(\sqrt{3}+1\right)-\dfrac{4\left(1+\sqrt{7}\right)}{1-7}\)

\(=\dfrac{\sqrt{3}}{\sqrt{2}}-\sqrt{3}-1-\dfrac{4\left(1+\sqrt{7}\right)}{-6}\)

\(=\dfrac{2\sqrt{3}}{2}-\sqrt{3}-1+\dfrac{2+2\sqrt{7}}{3}\)

\(=\dfrac{6\sqrt{3}-6\left(\sqrt{3}+1\right)+2\left(2+2\sqrt{7}\right)}{6}\)

\(=\dfrac{6\sqrt{3}-6\sqrt{3}-6+4+4\sqrt{7}}{6}\)

\(=\dfrac{4\sqrt{7}-2}{6}\)

\(=\dfrac{2\sqrt{7}-1}{3}\)

\(=\dfrac{\sqrt{12}\left(1-\sqrt{3}\right)}{2\sqrt{2}\left(1-\sqrt{3}\right)}-\sqrt{3}-1-\dfrac{4\left(\sqrt{7}+1\right)}{6}\)

\(=\dfrac{\sqrt{6}}{2}-\sqrt{3}-1-\dfrac{2}{3}\left(\sqrt{7}+1\right)\)

\(=\dfrac{\sqrt{6}}{2}-\sqrt{3}-1-\dfrac{2}{3}\sqrt{7}-\dfrac{2}{3}\)

\(=\dfrac{1}{2}\sqrt{6}-\sqrt{3}-\dfrac{2}{3}\sqrt{7}-\dfrac{5}{3}\)

11 tháng 8 2018

\(VT=\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{3}=\sqrt{6+2\sqrt{6}+2\sqrt{3}+2\sqrt{2}}-\sqrt{3}=\sqrt{3+2+1+2.\sqrt{3}.\sqrt{2}+2\sqrt{3}.1+2\sqrt{2}.1}-\sqrt{3}=\sqrt{\left(\sqrt{3}+\sqrt{2}+1\right)^2}-\sqrt{3}=1+\sqrt{3}+\sqrt{2}-\sqrt{3}=1+\sqrt{2}=VP\) Vậy , đẳng thức được chứng minh .