Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu \(a\perp b\) và b//c thì ta có : \(a\perp c\)
vậy chọn đáp án B
a) vì x và y tỷ lệ nghịch voeis nhau nên ta có công thức: x=a/y
=> 4=a/10
=>a=4x10
=>a=40
b) y=40/x
c) nếu x=5 => y=40/5=>y=8
nếu x= -8=> y=40/-8=>y=-5
HT
A B C D E K F
a, K;F là trung điểm của BD; BC (gt)
=> FK là đtb của tg BDC
=> FK // DC
mà DC // AB do ABCD là hình thang
=> FK//AB
b, K;E là trung điểm của BD; AD => KE là đtb của tg ABD
=> KE = 1/2 AB VÀ KE // AB
có AB = 4
=> ke = 2 cm
c, có KE // AB mà KF // AB
=> E;K;F thẳng hàng (tiên đề ơ clit)
E D C B H K x M N A
a) Xét \(\Delta BEA\) và \(\Delta DCA\) có:
AE = AC (gt)
\(\widehat{BAE}=\widehat{DAC}\) (đối đỉnh)
AB = AD (gt)
\(\Rightarrow\Delta BEA=\Delta DCA\) (c.g.c)
\(\Rightarrow BE=CD\) (2 cạnh t/ư)
b) Ta có: \(BM=\frac{1}{2}BE\) (M là tđ)
\(DN=\frac{1}{2}CD\) (N là tđ)
mà BE = CD \(\Rightarrow BM=DN\)
Vì \(\Delta BEA=\Delta DCA\) (câu a)
\(\Rightarrow\widehat{EBA}=\widehat{CDA}\) (so le trong)
hay \(\widehat{MBA}=\widehat{NDA}\)
Xét \(\Delta ABM\) và \(\Delta ADN\) có:
AB = AD (gt)
\(\widehat{MBA}=\widehat{NDA}\) (c/m trên)
BM = DN (c/m trên)
\(\Rightarrow\Delta ABM=\Delta ADN\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{DAN}\) (2 góc t/ư)
mà \(\widehat{DAN}+\widehat{NAB}=180^o\) (kề bù)
\(\Rightarrow\widehat{BAM}+\widehat{NAB}=180^o\)
\(\Rightarrow M,A,N\) thẳng hàng.
B C A M N H K O
a) Tam giác ABC cân tại A nên AB = AC và \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
Xét tam giác ABM và tam giác ACN có:
AB = AC
MB = NC
\(\widehat{ABM}=\widehat{ACN}\)
\(\Rightarrow\Delta ABM=\Delta ACN\left(c-g-c\right)\)
b) Do \(\Delta ABM=\Delta ACN\Rightarrow\widehat{BAH}=\widehat{CAK}\) (Hai góc tương ứng)
Xét tam giác vuông AHB và AKC có:
AB = AC (gt)
\(\widehat{BAH}=\widehat{CAK}\)
\(\Rightarrow\Delta AHB=\Delta AKC\) (Cạnh huyền - góc nhọn)
\(\Rightarrow AH=AK\)
c) Ta có \(\Delta AHB=\Delta AKC\Rightarrow HB=KC\)
Xét tam giác vuông AHO và AKO có:
AH = AK
AO chung
\(\Rightarrow\Delta AHO=\Delta AKO\) (Cạnh huyền - cạnh góc vuông)
\(\Rightarrow HO=KO\)
Mà HB = CK nên OB = OH - HB = OK - CK = OC
Vậy nên tam giác OBC cân tại O.
a: ta có: \(\widehat{KAC}+\widehat{KAB}=\widehat{BAC}=90^0\)
\(\widehat{KAB}+\widehat{HBA}=90^0\)(ΔHAB vuông tại H)
Do đó: \(\widehat{KAC}=\widehat{HBA}\)
Xét ΔKAC vuông tại K và ΔHBA vuông tại H có
AC=BA
\(\widehat{KAC}=\widehat{HBA}\)
Do đó: ΔKAC=ΔHBA
=>AK=BH
b: Ta có: ΔABC vuông cân tại A
mà AM là đường trung tuyến
nên AM\(\perp\)BC
Ta có: \(\widehat{HAM}+\widehat{HEM}=90^0\)(ΔEMA vuông tại E)
\(\widehat{HBM}+\widehat{AEB}=90^0\)(ΔEHB vuông tại H)
=>\(\widehat{HBM}=\widehat{HAM}=\widehat{KAM}\)
c: Xét ΔEHB vuông tại H và ΔEMA vuông tại M có
\(\widehat{HEB}\) chung
Do đó: ΔEHB~ΔEMA
=>\(\dfrac{EH}{EM}=\dfrac{EB}{EA}\)
=>\(\dfrac{EH}{EB}=\dfrac{EM}{EA}\)
Xét ΔEHM và ΔEBA có
\(\dfrac{EH}{EB}=\dfrac{EM}{EA}\)
\(\widehat{HEM}\) chung
Do đó: ΔEHM~ΔEBA
=>\(\widehat{EHM}=\widehat{EBA}=45^0\)
Xét tứ giác AMKC có \(\widehat{AMC}=\widehat{AKC}=90^0\)
nên AMKC là tứ giác nội tiếp
=>\(\widehat{AKM}=\widehat{ACM}=45^0\)
Xét ΔMHK có \(\widehat{MHK}+\widehat{MKH}=45^0+45^0=90^0\)
nên ΔMHK vuông cân tại M