Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5 :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{59}\)
\(A=1-\frac{1}{50}\)
từ trên ta có : \(1-\frac{1}{50}< 1\)
\(\Rightarrow A< 1\)
Bài 1 mk ko hiểu đề cho lắm
Bài 2 :
Đặt \(A=\frac{x+4}{x-2}+\frac{2x-5}{x-2}\)
Ta có :
\(\frac{x+4}{x-2}+\frac{2x-5}{x-2}=\frac{x+4+2x-5}{x-2}=\frac{3x-1}{x-2}=\frac{3x-6+5}{x-2}=\frac{3\left(x-2\right)}{x-2}+\frac{5}{x-2}=3+\frac{5}{x-2}\)
Để \(A\) là số nguyên thì \(\frac{5}{x-2}\) phải là số nguyên \(\Rightarrow\) \(5⋮\left(x-2\right)\) \(\Rightarrow\) \(\left(x-2\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Do đó :
\(x-2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(3\) | \(1\) | \(7\) | \(-3\) |
Vậy \(x\in\left\{-3;1;3;7\right\}\) thì A là số nguyên
Chúc bạn học tốt ~
Giải:
1) Thời gian người đó làm xong 6 sản phẩm là:
11 - 8 = 3 (giờ)
Thòi gian người đó làm một sản phẩm là:
3 : 6 = 0,5 (giờ)
=30 (phút)
Đáp số: 30 phút
2) 1/5 giờ = 12 phút = 720 giây
\(2\frac{1}{4}\) phút + \(\frac{1}{3}\) phút = 135 giây + 20 giây = 155 giây
Chúc bạn học tốt!
\(\frac{2017}{1.2.3}+\frac{2017}{2.3.4}+\frac{2017}{3.4.5}+...+\frac{2017}{19.20.21}\)
\(=2017\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{19.20.21}\right)\)
\(=2017.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{19.20.21}\right)\)
\(=2017.\left(1-\frac{1}{2}-\frac{1}{3}-\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)-...-\left(\frac{1}{19}-\frac{1}{20}-\frac{1}{21}\right)\right)\)
\(=2017.\left(1+\frac{1}{21}\right)\)phá ngoặc trước dấu trừ đổi dấu,rút gọn:
\(=2017.\frac{20}{21}=\frac{40340}{21}\)
A = 0
B > 1
=)) A < B
T ik nha bạn =))
Chúc bạn học tốt nhé !!!
\(S=\frac{2016}{2.3:2}+\frac{2016}{3.4:2}+...+\frac{2016}{2015.2016:2}\)
\(S=\frac{4032}{2.3}+\frac{4032}{3.4}+...+\frac{4032}{2015.2016}\)
\(S=4032\left[\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\right]\)
\(S=4032\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right]\)
\(S=4032\left[\frac{1}{2}-\frac{1}{2016}\right]=4032\cdot\frac{1007}{2016}\)
\(S=2014\)
S = \(2016+\frac{2016}{1+2}+\frac{2016}{1+2+3+}+...+\frac{2016}{1+2+3+...+2015}\)
S = \(2016+\left(\frac{2016}{1+2}+\frac{2016}{1+2+3}+...+\frac{2016}{1+2+3+...+2015}\right)\)
S = \(2016+2016.\left(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2015}\right)\)
đặt A = \(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2015}\)
A = \(\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+...+\frac{1}{\left(1+2015\right).2015:2}\)
A = \(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2015.2016}\)
A = \(2.\left(\frac{1}{2}-\frac{1}{3}\right)+2.\left(\frac{1}{3}-\frac{1}{4}\right)+...+2.\left(\frac{1}{2015}-\frac{1}{2016}\right)\)
A = \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)
A = \(2.\left(\frac{1}{2}-\frac{1}{2016}\right)\)
A = \(2.\frac{1007}{2016}=\frac{1007}{1008}\)
Thay A vào ta được :
S = \(2016+2016.\frac{1007}{1008}\)
S = \(2016.\left(1+\frac{1007}{1008}\right)\)
S = \(2016.\frac{2015}{1008}\)
S = \(4030\)
À không mk có 2 nick,nick này là mk mới lập vì nick kia mk bị mất ạ=))
\(-\frac{1}{5}< 0;\frac{1}{1000}>0=>-\frac{1}{5}< \frac{1}{1000}\)
\(\frac{1}{1000}\)lớn hơn đơn giản vì số dương đơn nhiên lớn hơn số âm -_-