Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\sqrt{7}\) sẽ nằm trong khoảng từ \(2\rightarrow3\)
còn \(\sqrt{15}\)sẽ nằm trong khoảng từ \(3\rightarrow4\)
mà \(3+4=7\) và \(\sqrt{7}< 3\)
\(\sqrt{15}< 4\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)
\(7<9\Rightarrow\sqrt{7}<\sqrt{9}=3\)
\(15<16\Rightarrow\sqrt{15}<\sqrt{16}=4\)
\(\Rightarrow\sqrt{7}+\sqrt{15}<3+4=7\)
\(\sqrt{\frac{\left(-5\right)^2}{7}}=\frac{\sqrt{\left(-5\right)^2}}{\sqrt{7}}=\frac{|5|}{\sqrt{7}}=\frac{5\sqrt{7}}{7}\)
\(\frac{-\sqrt{\left(-5\right)^2}}{-\sqrt{49}}=\frac{\sqrt{\left(-5\right)^2}}{\sqrt{49}}=\frac{|5|}{|7|}=\frac{5}{7}\)
\(\frac{5\sqrt{7}}{7}>\frac{5}{7}\leftrightarrow\sqrt{\frac{\left(-5\right)^2}{7}}>\frac{-\sqrt{\left(-5\right)^2}}{-\sqrt{49}}\)
a) \(15=\sqrt{225}\)
\(\sqrt{235}=\sqrt{235}\)
vi \(225< 235\)nen \(\sqrt{225}< \sqrt{235}\)
vay \(15< \sqrt{235}\)
Câu b)
Ta có \(\sqrt{7}< \sqrt{9}\Leftrightarrow\sqrt{7}< 3\)
\(\sqrt{15}< \sqrt{16}\Leftrightarrow\sqrt{15}< 4\)
Cộng theo vế: \(\sqrt{7}+\sqrt{15}< 3+4\) hay \(\sqrt{7}+\sqrt{15}< 7\)
Bài 3 :
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)
\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)
\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)
\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)
.....
\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)
\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
\(\sqrt{7}+\sqrt{15}<\sqrt{9}+\sqrt{25}=3+5=8=\sqrt{64}=\sqrt{65-1}\)
\(\sqrt{65-1}=\sqrt{64}=8\)
\(\sqrt{7}<\sqrt{9};\sqrt{15}<\sqrt{16}\rightarrow\sqrt{7}+\sqrt{15}<\sqrt{9}+\sqrt{16}=3+4=7<8\)
Do đó phải điền dấu <
\(\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)
Vậy \(\sqrt{7}+\sqrt{15}< 7\)