Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
+ Khi xảy ra sóng dừng trên dây có 20 bụng sóng
+ Biên độ dao động của các phần tử dây cách nút A một đoạn d được xác định bằng biểu thức:
với là biên độ của điểm bụng
+ Theo giả thuyết của bài toán
Đáp án A
+ Khi xảy ra sóng dừng trên dây có 20 bụng sóng
+ Biên độ dao động của các phần tử dây cách nút A một đoạn d được xác định bằng biểu thức:
với là biên độ của điểm bụng
+ Theo giả thuyết của bài toán
Ta có $\lambda =24cm $
Bạn vẽ hình ra .
Đoạn AB =24cm sau đó vẽ 2 bụng sóng.
Lấy M N nằm giữa sao cho MN= AB/3 = 8 cm.
Khoảng cách MN lớn nhất khi chúng nằm trên bụng và nhỏ nhất khi duỗi thẳng.
Ta có $\dfrac{MN_{lớn}}{MN_{nhỏ}} =1.25 \rightarrow MN_{lớn}=10 \rightarrow $biên độ của M và N là 3cm.
Khoảng cách từ M đến nút bằng 4cm =$\dfrac{\lambda}{6} \rightarrow A_{bụng} =2\sqrt{3}$
Đây em nhé Câu hỏi của Nguyễn Thị Trúc Đào - Vật lý lớp 12 | Học trực tuyến
\(\omega=\frac{2\pi}{T}=2\pi\)(rad/s)
Vận tốc cực đại \(v_{max}=\omega A=2\pi.5=10\pi\)(cm/s)
Vì vận tốc là đại lượng biến thiên điều hòa theo thời gian, nên ta khảo sát nó bằng véc tơ quay.
10π v 5π M N -10π O
Tại thời điểm t, trạng thái của vận tốc ứng với véc tơ OM, sau 1/6 s = 1/6 T, véc tơ quay: 1/6.360 = 600
Khi đó, trạng thái của vận tốc ứng với véc tơ ON --> Vận tốc đạt giá trị cực đại là: \(10\pi\) (cm/s)
Đáp án B.
Ta có: \(v=\omega\sqrt{s^2_0-s^2}=\sqrt{gl\left(\alpha^2_0-a^2_1\right)}\)\(=0,271\left(m\right)=27,1\left(cm\text{/}s\right)\)
Đáp án B
+ Sóng dừng xảy ra trên dây với 10 bụng sóng → 5λ = 0,6 m → λ = 12 cm.
+ Ta có M là bụng sóng, N và P là các điểm dao động với biên độ A N = 1 2 A A P = 3 2 A
Ta có A M – A N = 0 , 5 A M = 3 m m → A M = 6 m m .
+ Khoảng thời gian giữa hai lần liên tiếp để li độ tại M bằng biên độ tại P là Δ t = T 6 = 0 , 004 s → T = 0,024 s.
→ Tốc độ dao động cực đại của M là v M m a x = 2 π A M T = 2 π .6 0 , 024 = 500 π m m / s