K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2018

Đáp án là C

Các số nguyên tố nhỏ hơn hoặc bằng 5 là: 2; 3; 5

Vì số cần tìm chia hết cho 2 và 5 nên có dạng a0−−−−−−−−−−−−

Vì a0−−−−−−−−−−−− ⋮ 3 ⇒ a ⋮ ⇒ a ∈ {3; 6; 9}

Vì a0−−−−−−−−−−−− là số nhỏ nhất nên a = 3

Vậy số cần tìm là 30

1 tháng 11 2016

Vì : \(\overline{abc}⋮a,b,c\) . Mà : a,b,c là chữ số khác nhau và là số nguyên tố

=> a,b,c phải là các số nguyên tố có 1 chữ số .

=> a,b,c \(\in\) { 2;3;5;7 }

Vì : \(\overline{abc}\) \(⋮\)2 và cho 5 => c = 0 mà c phải là số nguyên tố ( Vô lý )

=> a,b,c \(\in\) { 2;3;7 } và \(\in\) { 3;5;7 }

Ta xét hai trường hợp :

+) Nếu a,b,c \(\in\) { 2;3;7 } => \(\overline{abc}\) \(⋮\) 2 => c = 2

Vậy ta có các số : 372 và 732

Vì : 372 \(⋮\)3 và \(⋮̸\) 7 ; 732 \(⋮\)3 và \(⋮̸\) 7 ( Vô lý )

+) Nếu a,b,c \(\in\) { 3;5;7 }

=> \(\overline{abc}⋮3\Rightarrow a+b+c⋮3\)

Vì : a + b + c = 3 + 5 + 7 = 12

Mà : \(\overline{abc}⋮5\Rightarrow c=5\)

Vậy ta có các số : 375 và 735

Vì : 375 \(⋮̸\) 7 ; \(735⋮7\)

=> \(\overline{abc}=735\)

Vậy số cần tìm là : 735 .

1 tháng 11 2016

sao bạn lại chứng minh được abc chia hết cho 5

Phần I: (3 điểm) Trong các câu hỏi sau, hãy chọn phương án trả lời đúng, chính xác nhất và trình bày vào tờ giấy bài làm.Câu 1: Cho ba điểm M, P, Q thẳng hàng. Nếu MP + PQ = MQ thì: A. Điểm Q nằm giữa hai điểm P và M B. Điểm M nằm giữa hai điểm P và Q C. Điểm P nằm giữa hai điểm M và Q D. Không có điểm nào nằm giữa hai điểm kia.Câu 2: Gọi M là tập hợp các số nguyên tố có một chữ số....
Đọc tiếp

Phần I: (3 điểm) Trong các câu hỏi sau, hãy chọn phương án trả lời đúng, chính xác nhất và trình bày vào tờ giấy bài làm.

Câu 1: Cho ba điểm M, P, Q thẳng hàng. Nếu MP + PQ = MQ thì: A. Điểm Q nằm giữa hai điểm P và M B. Điểm M nằm giữa hai điểm P và Q C. Điểm P nằm giữa hai điểm M và Q D. Không có điểm nào nằm giữa hai điểm kia.

Câu 2: Gọi M là tập hợp các số nguyên tố có một chữ số. Tập hợp M gồm có bao nhiêu phần tử?

A. 2 phần tử B. 5 phần tử C. 4 phần tử D. 3 phần tử

Câu 3: Để số a34b vừa chia hết cho 3, vừa chia hết cho 5 thì chữ số thích hợp thay a ; b là:

A. 0 B. 5 C. 0 hoặc 5 D. Không có chữ số nào thích hợp.

Câu 4: Kết quả của phép tính (– 28) + 18 bằng bao nhiêu?

A. 46 B. – 46 C. 10 D. – 10

Câu 5: Trong phép chia hai số tự nhiên, nếu phép chia có dư, thì:

A. Số dư bao giờ cũng lớn hơn số chia

B. Số dư bằng số chia

C. Số dư bao giờ cũng nhỏ hơn số chia

D. Số dư nhỏ hơn hay bằng số chia

Câu 6: Kết quả của phép tính m8. m4 khi được viết dưới dạng một luỹ thừa thì kết quả đúng là: A. m12 B. m2 C. m32 D. m4

Phần II:

Câu 7: Thực hiện các phép tính sau: a) 56 : 53 + 23 . 22 b) (– 5) + (– 10) + 16 + (– 7)

Câu 8: Tìm x, biết: a) (x – 35) – 120 = 0 b) 12x – 23 = 33 : 27 c) x + 7 = 0

Câu 9: a) Phân tích số 60 ra thừa số nguyên tố.

b) Tìm Ư(30).

Câu 10: Cho đoạn thẳng AB dài 8cm. Trên tia AB lấy điểm M sao cho AM = 4cm.

a.Điểm M có nằm giữa hai điểm A và B không? Vì sao?

b.So sánh AM và MB

c.Điểm M có phải là trung điểm của AB không? Vì sao?

Câu 11: Tìm số tự nhiên lớn nhất có bốn chữ số sao cho khi đem số đó lần lượt chia cho các số 11, 13 và 17 thì đều có số dư bằng 7.

—- HẾT —–

 

1

Câu 8:

a: x-35-120=0

=>x-35=120

hay x=155

b: \(12x-23=33:27\)

=>12x-23=11/9

=>12x=218/9

hay x=109/54

c: x+7=0

=>x=0-7

=>x=-7

Câu 9: 

a: \(60=2^2\cdot3\cdot5\)

b: Ư(30)={1;2;3;5;6;10;15;30}

Phần I: (3 điểm) Trong các câu hỏi sau, hãy chọn phương án trả lời đúng, chính xác nhất và trình bày vào tờ giấy bài làm.Câu 1: Cho ba điểm M, P, Q thẳng hàng. Nếu MP + PQ = MQ thì:A. Điểm Q nằm giữa hai điểm P và M B. Điểm M nằm giữa hai điểm P và Q C. Điểm P nằm giữa hai điểm M và QD. Không có điểm nào nằm giữa hai điểm kia. Câu 2: Gọi M là tập hợp các số nguyên tố có một chữ số....
Đọc tiếp

Phần I: (3 điểm) Trong các câu hỏi sau, hãy chọn phương án trả lời đúng, chính xác nhất và trình bày vào tờ giấy bài làm.

Câu 1: Cho ba điểm M, P, Q thẳng hàng. Nếu MP + PQ = MQ thì:

A. Điểm Q nằm giữa hai điểm P và M

B. Điểm M nằm giữa hai điểm P và Q

C. Điểm P nằm giữa hai điểm M và Q

D. Không có điểm nào nằm giữa hai điểm kia.

Câu 2: Gọi M là tập hợp các số nguyên tố có một chữ số. Tập hợp M gồm có bao nhiêu phần tử?

A. 2 phần tử

B. 5 phần tử

C. 4 phần tử

D. 3 phần tử

Câu 3: Để số —34— vừa chia hết cho 3, vừa chia hết cho 5 thì chữ số thích hợp ở vị trí dấu ? là:

A. 0

B. 5

C. 0 hoặc 5

D. Không có chữ số nào thích hợp.

Câu 4: Kết quả của phép tính (– 28) + 18 bằng bao nhiêu?

A. 46

B. – 46

C. 10

D. – 10

Câu 5: Trong phép chia hai số tự nhiên, nếu phép chia có dư, thì:

A. Số dư bao giờ cũng lớn hơn số chia

B. Số dư bằng số chia

C. Số dư bao giờ cũng nhỏ hơn số chia

D. Số dư nhỏ hơn hay bằng số chia

Câu 6: Kết quả của phép tính m8. m4 khi được viết dưới dạng một luỹ thừa thì kết quả đúng là:

A. m12

B. m2

C. m32

D. m4

Phần II: (7 điểm)

Câu 7: Thực hiện các phép tính sau:

a) 56 : 53 + 23 . 22

b) (– 5) + (– 10) + 16 + (– 7)

Câu 8: Tìm x, biết:

a) (x – 35) – 120 = 0

b) 12x – 23 = 33 : 27

c) x + 7 = 0

Câu 9: a) Phân tích số 60 ra thừa số nguyên tố.

b) Tìm Ư(30).

Câu 10: Cho đoạn thẳng AB dài 8cm. Trên tia AB lấy điểm M sao cho AM = 4cm.

a.Điểm M có nằm giữa hai điểm A và B không? Vì sao?

b.So sánh AM và MB

c.Điểm M có phải là trung điểm của AB không? Vì sao?

Câu 11: Tìm số tự nhiên lớn nhất có bốn chữ số sao cho khi đem số đó lần lượt chia cho các số 11, 13 và 17 thì đều có số dư bằng 7.

— HẾT —

 

1
11 tháng 12 2016

Phần I :

 

27 tháng 11 2016

nhỏ quá

13 tháng 9 2021

a)999

b)987

c)10000

d) 98786

13 tháng 9 2021

a 999

b987

c20000

d86420

Câu 1:Số tự nhiên nhỏ nhất có 6 chữ số chia hết cho 9 là Câu 2:Số nguyên tố lớn nhất có dạng 3a1 là Câu 3:Hiệu của số lớn nhất có bốn chữ số khác nhau và số chẵn nhỏ nhất có bốn chữ số khác nhau là Câu 4:Từ số 1 đến số 100 có bao nhiêu số chia hết cho 2 nhưng không chia hết cho 5?Trả lời: Số số thỏa mãn là Câu 5:Số nguyên tố nhỏ nhất có dạng aa3 là Câu 6:Số nguyên tố...
Đọc tiếp

Câu 1:
Số tự nhiên nhỏ nhất có 6 chữ số chia hết cho 9 là 

Câu 2:
Số nguyên tố lớn nhất có dạng 3a1 là 

Câu 3:
Hiệu của số lớn nhất có bốn chữ số khác nhau và số chẵn nhỏ nhất có bốn chữ số khác nhau là 

Câu 4:
Từ số 1 đến số 100 có bao nhiêu số chia hết cho 2 nhưng không chia hết cho 5?
Trả lời: Số số thỏa mãn là 

Câu 5:
Số nguyên tố nhỏ nhất có dạng aa3 là 

Câu 6:
Số nguyên tố lớn nhất có ba chữ số là

Câu 7:
Cho x;y là các số nguyên dương thỏa mãn:(x-2)(2y+3)=26 .
Khi đó 

Câu 8:
Tìm số tự nhiên n khác 1 để 3n+5 chia hết cho n.
Trả lời: 

Câu 9:
Biết x;y;z là ba số nguyên tố đôi một khác nhau. Hỏi số A=x2.y5.z có bao nhiêu ước số?
Trả lời có  ước.

Câu 10:
Tìm số tự nhiên n để n2+3 chia hết cho n+2.
Trả lời: n=

1
19 tháng 12 2015

1.100008

2.331

tạm 2 câu đã, bạn tick mình làm tiếp

10 tháng 5 2017

1/ P = 123456....20132014

Từ 1 - 9 có 9 chữ số

từ 10 -99 có: [[99-10]: 1 + 1]x 2 = 180 chữ số

từ 100 - 999 có: [[999-100]: 1 + 1] x 3 = 2700 chữ số

từ 1000 - 2014 có: [[2014 - 1000]: 1 + 1] x 4 = 4060 chữ số

=> P có: 4060 + 2700 + 180 + 9 = 6949 chữ số

2/ 

n là số n tố > 3 => n lẻ => 22 lẻ

=> n2+ 2015 chia hết cho 2 nên là hợp số

3/

Gọi 1994xy là A. A chia hết cho 72 => A chia hết cho 8 và 9

Vì A chia hết cho 8 nên A chẵn => y E {0; 2; 4; 6; 8}

* nếu y = 0 => x = 4

* nếu y = 2 => x = 2

* nếu y = 4 => x E {0; 9}

* nếu y = 6 => x = 7

* nếu y = 8 => x = 5

Vậy [x,y] = [0;4],[2;2],[4;0 và 9],[6;7],[8;5]

4/

x/9 - 3/ y = 1/18

=> 2x/18 - 3/y = 1/18

=> 3/y = 1/18 - 2x/18

=> 3/y = 1-2x/18

=> y - 2xy = 54=> y[1-2x] = 54

mà 1 - 2x lẻ nên y chẵn

mà y thuộc ước 54 => y E {-2;2;-6;6;-18;18;-54;54}

y-22-66-1818-5454
1-2x-2727-99-33-11
2x28-2610-84-220
x14-135-42-110

vậy: [x,y] = [14;-2],[2;-13],[-6;5],[6;-4],[-18;2],[18;-1],[-54;1],[54;0]

5/

Theo đề bài, ta có:

b E BC[14, 21]

mà b nhỏ nhất nên b = 42

=> 14a = 42 . 5

=> a = 15;

=> 21c = 28 . 42

=> c = 56;

từ đó suy ra

6d = 11 . 56

=> d = 308/3

=> d k là số tự nhiên. Vậy a,b,c,d E tập rỗng

30 tháng 10 2018

A) Số đó là số 10002

B) Số đó là số 10008

A) 10000

29 tháng 12 2019

01234

26 tháng 9 2016

Số chia hết cho cả 3 và 5 có tận cùng là 0 hoặc 5 .

Ta sắp xếp các số bé nhất rồi từ từ lớn :

Bé nhất ở đầu là 1 ( hàng trăm nghìn )

Bé nhì ở hàng chục nghìn là số 0

Bé ba ở đặt ở hàng số nhỏ tiếp theo là 2

Vậy ta đã ra được ba số đầu là 102

Lưu ý : Đừng để số 0 ở trước số 1 vì như thế số 0 ở hàng trăm nghìn đã mất đi và số đó chỉ còn năm chữ số .

Số liên tiếp 2 là 3

Hàng trăm sẽ là 3

Sau 3 tới 4

Hàng chục sẽ là 5

Và sau 4 tới 5

Hàng đơn vị là 5

Vậy ta ra thêm ba số đuôi là 345

Ráp số đầu trước số đuôi ta sẽ ra được số : 102345

Thử lại : Số 102345 : 3 = 34115

102345 : 5 = 20469

Vậy số tự nhiên nhỏ nhất có sáu chữ số khác nhau chia hết cho cả 3 và 5 là số 102345

Đáp số : 102345