Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(15=\sqrt{225}\)
\(\sqrt{235}=\sqrt{235}\)
vi \(225< 235\)nen \(\sqrt{225}< \sqrt{235}\)
vay \(15< \sqrt{235}\)
Câu b)
Ta có \(\sqrt{7}< \sqrt{9}\Leftrightarrow\sqrt{7}< 3\)
\(\sqrt{15}< \sqrt{16}\Leftrightarrow\sqrt{15}< 4\)
Cộng theo vế: \(\sqrt{7}+\sqrt{15}< 3+4\) hay \(\sqrt{7}+\sqrt{15}< 7\)
\(\sqrt{7}+\sqrt{15}<\sqrt{9}+\sqrt{25}=3+5=8=\sqrt{64}=\sqrt{65-1}\)
\(\sqrt{65-1}=\sqrt{64}=8\)
\(\sqrt{7}<\sqrt{9};\sqrt{15}<\sqrt{16}\rightarrow\sqrt{7}+\sqrt{15}<\sqrt{9}+\sqrt{16}=3+4=7<8\)
Do đó phải điền dấu <
a)
Ta có
\(\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)
b) Ta có
\(\sqrt{17}+\sqrt{5}+9>\sqrt{16}+\sqrt{4}+9=4+2+9=15\)
\(\Rightarrow\sqrt{17}+\sqrt{5}+9>15\)
Mặt khác
\(\sqrt{115}< \sqrt{225}=15\)
Mà \(\sqrt{17}+\sqrt{5}+9>15\)
\(\Rightarrow\sqrt{115}< \sqrt{17}+\sqrt{5}+9\)
ta có \(\sqrt{7}< \sqrt{9}\)
và \(\sqrt{15}< \sqrt{16}\)
=> \(\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)
mà \(\sqrt{9}+\sqrt{16}=3+4=7\)
=> \(\sqrt{7}+\sqrt{15}< 7\)
a ) \(\sqrt{7}+\sqrt{15}vs7\)
=> \(\sqrt{7}+\sqrt{15}< 7\)
b ) \(\sqrt{17}+\sqrt{5}+1vs\sqrt{45}\)
=> \(\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)
b, \(\sqrt{17}+\sqrt{5}+1\) và \(\sqrt{45}\)
\(\sqrt{17}+\sqrt{5}+1>\sqrt{16}+\sqrt{4}+1=4+2+1=7\)
\(\sqrt{45}< \sqrt{49}=7\)
\(\Rightarrow\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)
a) Ta có 290>289
<=> \(\sqrt{290}\) > \(\sqrt{289}\)
<=> \(\sqrt{290}\) > 17
Vậy ..........
\(a,290>289\)
\(\Rightarrow\sqrt{290}>\sqrt{289}\)
\(\Rightarrow\sqrt{290}>17\)
\(b,\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 3+4\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)
\(\sqrt{7}+\sqrt{11}+\sqrt{32}+\sqrt{40}\)\(< 18\)nha bạn
a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)
\(7^2=49=7+42\)
mà \(15+2\sqrt{105}< 42\)
nên \(\sqrt{7}+\sqrt{15}< 7\)
b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)
\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)
mà \(2\sqrt{22}< 15+10\sqrt{3}\)
nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)
Ta so sánh: \(\sqrt{3}-\sqrt{2}\) và \(\sqrt{7}-\sqrt{6}\)
\(\sqrt{3}-\sqrt{2}=\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}=\frac{3-2}{\sqrt{3}+\sqrt{2}}=\frac{1}{\sqrt{3}+\sqrt{2}}\)
\(\sqrt{7}-\sqrt{6}=\frac{\left(\sqrt{7}-\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}{\sqrt{7}+\sqrt{6}}=\frac{7-6}{\sqrt{7}+\sqrt{6}}=\frac{1}{\sqrt{7}+\sqrt{6}}\)
Vì \(\sqrt{3}+\sqrt{2}< \sqrt{7}+\sqrt{6}\)
nên \(\frac{1}{\sqrt{3}+\sqrt{2}}>\frac{1}{\sqrt{7}+\sqrt{6}}\)
\(\Rightarrow\sqrt{3}-\sqrt{2}>\sqrt{7}-\sqrt{6}\)
\(\Rightarrow\sqrt{3}+\sqrt{6}>\sqrt{7}+\sqrt{2}\) hay x > y
ta có \(\sqrt{7}\) sẽ nằm trong khoảng từ \(2\rightarrow3\)
còn \(\sqrt{15}\)sẽ nằm trong khoảng từ \(3\rightarrow4\)
mà \(3+4=7\) và \(\sqrt{7}< 3\)
\(\sqrt{15}< 4\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)
\(7<9\Rightarrow\sqrt{7}<\sqrt{9}=3\)
\(15<16\Rightarrow\sqrt{15}<\sqrt{16}=4\)
\(\Rightarrow\sqrt{7}+\sqrt{15}<3+4=7\)