Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng tính chất dãy tỉ số bằng nhau => \(\frac{2+3}{4+6}=\frac{2-3}{4-6}\)
So sánh:
\(P=\frac{4}{7}+5+\frac{3}{7^2}+\frac{5}{7^3}+\frac{6}{7^4}\)
\(Q=\frac{5}{7^4}+5+\frac{6}{7^2}+\frac{4}{7}+\frac{5}{7^3}\)
Ta có : \(P=\left\{\frac{4}{7}+5+\frac{5}{7^3}\right\}+\left\{\frac{3}{7^2}+\frac{6}{7^4}\right\}\)
\(Q=\left\{\frac{4}{7}+5+\frac{5}{7^3}\right\}+\left\{\frac{5}{7^4}+\frac{6}{7^2}\right\}\)
So sánh : \(\frac{3}{7^2}+\frac{6}{7^4}\)và \(\frac{5}{7^4}+\frac{6}{7^2}\)
Ta có : \(\frac{3}{7^2}+\frac{6}{7^4}=\frac{49.3}{7^4}+\frac{6}{7^4}\)
\(\frac{5}{7^4}+\frac{6}{7^2}=\frac{5}{7^4}+\frac{49.6}{7^4}\)
Vì 49.3 + 6 < 49.6 + 5 nên Q > P.
Giải:
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2}{4}=\frac{3}{6}=\frac{2+3}{4+6}=\frac{2-3}{4-6}\)
\(\Rightarrow\frac{2+3}{4+6}=\frac{2-3}{4-6}\)
Vậy \(\frac{2+3}{4+6}=\frac{2-3}{4-6}\)
\(\left(3-\frac{1}{4}+\frac{2}{3}\right)-\left(5+\frac{1}{3}-\frac{6}{5}\right)-\left(6-\frac{7}{4}+\frac{3}{2}\right)\)
\(=3-\frac{1}{4}+\frac{2}{3}-5-\frac{1}{3}+\frac{6}{5}-6+\frac{7}{4}-\frac{3}{2}\)
\(=\left(3-5-6\right)+\left(-\frac{1}{4}+\frac{7}{4}-\frac{3}{2}\right)+\left(\frac{2}{3}-\frac{1}{3}\right)+\frac{6}{5}\)
\(=-8+\frac{1}{3}+\frac{6}{5}\)
\(=-\frac{97}{15}\)
= 3 - 1/4 +2/3 - 5 - 1/3 + 6/5 - 6 + 7/4 - 3/2
= 2/3 . -3/2 . ( 3 + 5 + 6 ) . ( 2/3 + 1/3 ) . ( -1/4 - 7/4)
= -1 . 14 . 1 . 6/4
= -14 . 1 . 6/4
= -14 . 6/4
= -84/4 = -21
a, A = \(\frac{1}{2}.\frac{3}{4}.\frac{4}{5}...\frac{99}{100}\)
\(A=\frac{1}{2}.\left(\frac{3.4....99}{4.5...100}\right)\)
\(A=\frac{1}{2}.\left(\frac{3}{100}\right)\)\(\)\(A=\frac{3}{200}\)
\(B=\frac{2}{3}.\frac{4}{5}.\frac{5}{6}...\frac{100}{101}\)
\(B=\frac{2}{3}.\left(\frac{4.5...100}{5.6...101}\right)\)
\(B=\frac{2}{3}.\left(\frac{4}{101}\right)\)
\(B=\frac{8}{303}\)
\(A.B=\frac{8}{303}.\frac{3}{200}\)
\(A.B=\frac{1}{2525}\)
b, A = 1/2 x 3/100
B = 2/3 x 4/101
Ta có : 1 - 2/3 = 1/3; 1 - 1/2 = 1/2
MÀ 1/3 < 1/2 => 2/3 > 1/2 (1)
Ta có : 1 - 3/100 = 97/100
1 - 4/101 = 97/101
Mà 97/101 < 97/100 => 4/101 > 3/100 (2)
Từ (1) và (2) => B > A
a,
\(AB=\left[\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right]\cdot\left[\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\right]\)
\(AB=\frac{\left[1\cdot3\cdot5\cdot...\cdot99\right]\left[2\cdot4\cdot6\cdot...\cdot100\right]}{\left[2\cdot4\cdot6\cdot8\cdot...\cdot100\right]\left[3\cdot5\cdot7\cdot...\cdot101\right]}=\frac{1\cdot3\cdot5\cdot...\cdot99}{3\cdot5\cdot7\cdot...\cdot101}=\frac{1}{101}\)
b,
1/2 < 2/3
3/4 < 4/5
.............
99/100 < 100/101
=> \(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}< \frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\Leftrightarrow A< B\)
a) \(\frac{3}{4} + \left( {\frac{1}{2} - \frac{1}{3}} \right) = \frac{9}{{12}} + \left( {\frac{6}{{12}} - \frac{4}{{12}}} \right) = \frac{9}{{12}} + \frac{2}{{12}} = \frac{{11}}{{12}}\)
\(\frac{3}{4} + \frac{1}{2} - \frac{1}{3} = \frac{9}{{12}} + \frac{6}{{12}} - \frac{4}{{12}} = \frac{{15}}{{12}} - \frac{4}{{12}} = \frac{{11}}{{12}}\)
Vậy \(\frac{3}{4} + \left( {\frac{1}{2} - \frac{1}{3}} \right)\) = \(\frac{3}{4} + \frac{1}{2} - \frac{1}{3}\)
b)\(\frac{2}{3} - \left( {\frac{1}{2} + \frac{1}{3}} \right) = \frac{4}{6} - \left( {\frac{3}{6} + \frac{2}{6}} \right) = \frac{4}{6} - \frac{5}{6} = \frac{{ - 1}}{6}\)
\(\frac{2}{3} - \frac{1}{2} - \frac{1}{3} = \frac{4}{6} - \frac{3}{6} - \frac{2}{6} = \frac{1}{6} - \frac{2}{6} = \frac{{ - 1}}{6}\)
Vậy \(\frac{2}{3} - \left( {\frac{1}{2} + \frac{1}{3}} \right)\)=\(\frac{2}{3} - \frac{1}{2} - \frac{1}{3}\).
`#3107`
`a)`
`3/4 + (1/2 - 1/3)`
`= 3/4 + (3/6 - 2/6)`
`= 3/4 + 1/6`
`= 11/12`
`3/4 + 1/2 - 1/3`
`= 9/12 + 6/12 - 4/12`
`= (9 + 6 - 4)/12`
`= 11/12`
Vì `11/12 = 11/12`
`=> 3/4 + (1/2 - 1/3) = 3/4 + 1/2 - 1/3`
`b)`
`2/3 - (1/2 + 1/3)`
`= 2/3 - (3/6 + 2/6)`
`= 2/3 - 5/6`
`= -1/6`
`2/3 - 1/2 - 1/3`
`= 4/6 - 3/6 - 2/6`
`= (4 - 3 - 2)/6`
`= -1/6`
Vì `-1/6 = -1/6`
`=> 2/3 - (1/2 + 1/3) = 2/3 - 1/2 - 1/3`
Ta có :
\(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)
\(S=\frac{2+1}{2}+\frac{3+1}{3}+\frac{4+1}{4}+...+\frac{11+1}{11}\)
\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{11}\right)\)
\(S=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)\)
\(S=10+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)>10\)
\(\Rightarrow\)\(S>10\)
Vậy \(S>10\)
Chúc bạn học tốt ~
bằng nhau =0.5
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{2}{4}=\frac{3}{6}=\frac{2+3}{4+6}=\frac{2-3}{4-6}\)
\(\Rightarrow\frac{2+3}{4+6}=\frac{2-3}{4-6}\)