\(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2015}{4^{2015}}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2015

 > \(\frac{1}{2}\)

2 tháng 4 2018

\(P=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+\frac{4}{5^5}+...+\frac{11}{5^{12}}\)

\(\Rightarrow\)\(5P=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+\frac{4}{5^4}+...+\frac{11}{5^{11}}\)

\(\Rightarrow\)\(4P=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+\frac{1}{5^4}+...+\frac{1}{5^{11}}-\frac{1}{5^{12}}\)

\(\Rightarrow\)\(20P=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{10}}-\frac{1}{5^{11}}\)

\(\Rightarrow\)\(16P=1-\frac{1}{5^{11}}+\frac{1}{5^{12}}-\frac{1}{5^{11}}\)\(< 1\)

\(\Rightarrow\)\(P< \frac{1}{16}\)

P/s: nguyên tác: https://olm.vn/thanhvien/nhatphuonghocgiot

16 tháng 8 2018

Đạt BD

29 tháng 3 2016

Nhân E với 4, rút gọn phân số là số hạng của 4E. Lấy 4E trừ đi E, bạn tìm được 3E = 1 - 1/410  < 1 => E < 1 (đpcm).

29 tháng 3 2016

Ta có 

4E=\(1+\frac{1}{4}+....+\frac{1}{4^9}\)

4E-E= \(1-\frac{1}{4^{10}}\)<1

<=> E=\(\left(1-\frac{1}{4^{10}}\right):3<1\)

Vậy E<1

---------------

Thấy đúng thì k nhé