K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2018

ta có: \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)

\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{100}}+\frac{1}{3^{101}}\)

\(\Rightarrow A-\frac{1}{3}A=\frac{1}{3}-\frac{1}{3^{101}}< \frac{1}{3}\)

\(\Rightarrow\frac{2}{3}A< \frac{1}{3}\)

\(\Rightarrow A< \frac{1}{3}:\frac{2}{3}\)

\(\Rightarrow A< \frac{1}{2}\)

27 tháng 3 2018

Ta có:\(\frac{1}{2^2}=\frac{1}{4}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

....

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

                                                                              \(=\frac{1}{4}+\frac{1}{2}-\frac{1}{100}\)

                   B               <                                          \(\frac{1}{4}\)               <                       \(\frac{3}{4}\)

\(\Leftrightarrow B< \frac{3}{4}\)

19 tháng 8 2016

Theo bài ta có:

\(=\frac{\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\right)}{2}\)

\(=\frac{\left(1-\frac{100}{3^{100}}\right)+\left(\frac{2}{3}-\frac{1}{3}\right)+...+\left(\frac{99}{3^{98}}-\frac{98}{3^{98}}\right)+\left(\frac{100}{3^{99}}-\frac{99}{3^{99}}\right)}{2}\)

\(=\frac{\left(1-\frac{100}{3^{100}}\right)+\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)}{2}< \frac{1+\frac{1}{2}}{2}=\frac{3}{2}:2=\frac{3}{4}\)

Đpcm

 

20 tháng 8 2016

chứng minh àk

AH
Akai Haruma
Giáo viên
6 tháng 7

Lời giải:

$A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}$

$3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}$

$\Rightarrow 3A-A=1-\frac{1}{3^{100}}$

$\Rightarrow 2A=1-\frac{1}{3^{100}}<1$

$\Rightarrow A< \frac{1}{2}$

$\Rightarrow A< B$

16 tháng 4 2017

Ta có: \(\frac{1}{2}A=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{100}{2^{101}}\)

\(A-\frac{1}{2}A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}-\frac{100}{2^{101}}\)

Ta có: \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}=1-\frac{1}{2^{100}}< 1\)

\(\Rightarrow\frac{1}{2}A< 1-\frac{100}{2^{101}}\)

\(\Rightarrow A< 2-\frac{200}{2^{101}}< 2\)

Vậy A<2

22 tháng 9 2016

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)

            \(\frac{1}{3^2}< \frac{1}{2.3}\)

            ....................

             .....................

             \(\frac{1}{100^2}< \frac{1}{99.100}\)

Nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{99.100}\)

=>  \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}^2< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}^2^2< 1-\frac{1}{100}=\frac{99}{100}\)

22 tháng 9 2016

\(\frac{99}{100}\)\(\frac{3}{4}\)thì sao mà so sánh được

18 tháng 2 2017

vế trước lớn hơn