\(2\sqrt{3}\) và \(3\sqrt{2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2022

\(2\sqrt{3}=\sqrt{2^2.3}=\sqrt{12}\)

\(3\sqrt{2}=\sqrt{3^2.2}=\sqrt{18}\)

--> \(2\sqrt{3}< 3\sqrt{2}\)

17 tháng 5 2022

.-.còn cách giải nào dễ hiểu hơn nữa không đọc xong mù luôn cả chữ

2 tháng 6 2017

Võ Đông Anh Tuấn

Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)

a)

\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)

Vậy \(7>3\sqrt{5}\)

b)

\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)

Vậy \(8< 2\sqrt{7}+3\)

c)

\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)

Vậy \(3\sqrt{6}< 2\sqrt{15}\)

4 tháng 8 2020

\(4\)và \(1+2\sqrt{2}\)

Ta có \(3=\sqrt{9}\)

           \(2\sqrt{2}=\sqrt{2^2.2}=\sqrt{8}\)

Ta lại có \(8< 9\Leftrightarrow\sqrt{8}< \sqrt{9}\)

Hay \(2\sqrt{2}< 3\)\(\Leftrightarrow1+2\sqrt{2}< 1+3\Leftrightarrow1+2\sqrt{2}< 4\)

4 tháng 8 2020

\(4\)và \(2\sqrt{6}-1\)

Ta có \(5=\sqrt{25}\)

          \(2\sqrt{6}=\sqrt{2^2.6}=\sqrt{24}\)

Ta lại có \(25>24\Leftrightarrow\sqrt{25}>\sqrt{24}\)

Hay \(5>2\sqrt{6}\Leftrightarrow5-1>2\sqrt{6}-1\Leftrightarrow4>2\sqrt{6}-1\)

30 tháng 8 2020

\(a\)

\(\sqrt{7}+\sqrt{15}\) 

\(=\sqrt{7+15}\)

\(=4,69\)

\(4,69< 7\)

\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)

\(b\)

\(\sqrt{7}+\sqrt{15}+1\)

\(=\sqrt{7+15}+1\)

\(=4,69+1\)

\(=5,69\)

\(\sqrt{45}\)

\(=6,7\)

\(5,69< 6,7\)

\(\Rightarrow\)\(\sqrt{7}+\sqrt{15}+1\)\(< \)\(\sqrt{45}\)

\(c\)

\(\frac{23-2\sqrt{19}}{3}\)

\(=\frac{22.4,53}{3}\)

\(=\frac{95,7}{3}\)

\(=31,9\)

\(\sqrt{27}\)

\(=5,19\)

\(31,9>5,19\)

\(\text{​​}\Rightarrow\text{​​}\text{​​}\)\(\frac{23-2\sqrt{19}}{3}\)\(>\sqrt{27}\)

\(d\)

\(\sqrt{3\sqrt{2}}\)

\(=\sqrt{3.1,41}\)

\(=\sqrt{4,23}\)

\(=2,05\)

\(\sqrt{2\sqrt{3}}\)

\(=\sqrt{2.1,73}\)

\(=\sqrt{3,46}\)

\(=1,86\)

\(2,05>1,86\)

\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

\(Học \) \(Tốt !!!\)

30 tháng 8 2020

a) Ta có : \(\sqrt{7}< \sqrt{9}=3;\sqrt{15}< \sqrt{16}=4\)

Do đó : \(\sqrt{7}+\sqrt{15}< 3+4=7\)

b) Ta có : \(\sqrt{17}>\sqrt{16}=4;\sqrt{5}>\sqrt{4}=2\)

\(\Rightarrow\sqrt{17}+\sqrt{5}+1>4+2+1=7\)

Lại có : \(\sqrt{45}< \sqrt{49}< 7\)

Do đó : \(\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)

c) Ta thấy : \(\sqrt{19}>\sqrt{16}=4\)

\(\Rightarrow2\sqrt{19}>2.4=8\)

\(\Rightarrow-2\sqrt{19}< -8\)

\(\Rightarrow23-2\sqrt{19}< 23-8=15\)

\(\Rightarrow\frac{23-2\sqrt{19}}{3}< 5\). Mặt khác : \(\sqrt{27}>\sqrt{25}=5\)

Nên : \(\frac{23-2\sqrt{19}}{3}< \sqrt{27}\)

d) Vì : \(18>12>0\Rightarrow\sqrt{18}>\sqrt{12}>0\)

\(\Leftrightarrow3\sqrt{2}>2\sqrt{3}>0\)

\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

14 tháng 8 2018

a)So sánh vs 5/2

b)So sánh vs 40/9

19 tháng 6 2018

Xét hiệu \(\left(\sqrt{2}+\sqrt{6}\right)-\left(\sqrt{3}+2\right)\)

\(=\sqrt{6}-\sqrt{3}+\sqrt{2}-2\)

\(=\sqrt{2}.\sqrt{3}-\sqrt{3}+\sqrt{2}-\sqrt{2}.\sqrt{2}\)

\(=\sqrt{3}.\left(\sqrt{2}-1\right)-\sqrt{2}.\left(\sqrt{2}-1\right)\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{2}-1\right)>\left(\sqrt{2}-\sqrt{2}\right)\left(\sqrt{1}-1\right)=0\)

Hay \(\sqrt{2}+\sqrt{6}>\sqrt{3}+2\)

19 tháng 6 2018

Ta có :

\(\sqrt{2}+6\)

\(=\sqrt{2}+2+4\)

\(=\sqrt{2}+2+\sqrt{2}\)

\(=\left(\sqrt{2}\right)^2+2\)(1)

Và \(\sqrt{3}+2\)(2)

Từ (1) và (2)

\(\Rightarrow\sqrt{3}+2< \left(\sqrt{2}\right)^2+2\)

\(\Rightarrow\sqrt{3}+2< \sqrt{2}+6\)

Vậy .............

3 tháng 7 2017

Bài này dễ lắm

Câu 1

\(-\sqrt{5}\) lớn hơn \(-2\) . Vì 

\(-\sqrt{5}=-2,2236067977\) 

\(-2=-2\) 

Câu 2

\(\sqrt{2}+\sqrt{3}\) bé hơn \(\sqrt{10}\) . Vì

\(\sqrt{2}+\sqrt{3}=3,146264\)

\(\sqrt{10}=3,16227766\) 

Câu 3

\(8\) lớn hơn \(\sqrt{15}+\sqrt{17}\) 

\(8=8\)

\(\sqrt{15}+\sqrt{17}=7,996088972\)

17 tháng 6 2019

a)\(1+\sqrt{3}>1+\sqrt{1}=1+1=2\)

Vậy \(1+\sqrt{3}>2\)

c) \(\sqrt{3}-1< \sqrt{4}-1=2-1=1\)

Vậy \(\sqrt{3}-1< 1\)

e) \(\sqrt{2}+\sqrt{5}< \sqrt{16}+\sqrt{16}=4+4=8\)

Vậy \(\sqrt{2}+\sqrt{5}< 8\)

22 tháng 6 2017

a) \(2\sqrt{3}=\sqrt{4}.\sqrt{3}=\sqrt{12}< \sqrt{18}=\sqrt{9}.\sqrt{2}=3\sqrt{2}\)

b) \(6\sqrt{5}=\sqrt{36}.\sqrt{5}=\sqrt{36.5}=\sqrt{180}>\sqrt{150}=\sqrt{25}.\sqrt{6}=5\sqrt{6}\)

a) 2√3=√4.√3=√12<√18=√9.√2=3√2

b) 6√5=√36.√5=√36.5=√180>√150=√25.√6=5√6