Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(2^{32}=2^{30}.2^2=\left(2^3\right)^{10}.2^2=8^{10}.2^2\)
\(3^{23}=3^{20}.3^3=\left(3^2\right)^{10}.3^3=9^{10}.3^3\)
Mà \(8^{10}< 9^{10}\) và \(2^2< 3^3\)
\(\Rightarrow2^{32}< 3^{23}\)
a) \(\dfrac{11}{2}=\dfrac{10+1}{2}=5+\dfrac{1}{2}\)
\(\dfrac{32}{9}=\dfrac{27+5}{9}=3+\dfrac{5}{9}< 5+\dfrac{1}{2}\)
Vậy \(\dfrac{11}{2}>\dfrac{32}{9}\)
b)\(\dfrac{100}{23}=\dfrac{92+8}{23}=4+\dfrac{8}{23}\)
\(\dfrac{302}{123}=\dfrac{246+56}{123}=2+\dfrac{56}{123}< 4+\dfrac{8}{23}\)
Vậy \(\dfrac{100}{23}>\dfrac{302}{123}\)
c) \(\dfrac{515}{605}< \dfrac{515+1}{605+1}=\dfrac{516}{606}\Rightarrow\dfrac{515}{605}< \dfrac{516}{606}\)
a) Ta có \(0,625^{200}=\left(\dfrac{5}{8}\right)^{200}\) và \(0,5^{1000}=\left(\dfrac{1}{2}\right)^{1000}=\left(\dfrac{1}{2}\right)^{5.200}\) \(=\left[\left(\dfrac{1}{2}\right)^5\right]^{200}\) \(=\left(\dfrac{1}{32}\right)^{200}\). Mà hiển nhiên \(\left(\dfrac{5}{8}\right)^{200}>\left(\dfrac{1}{32}\right)^{200}\) nên suy ra \(0,625^{200}>0,5^{1000}\)
b) Ta thấy \(\left(-32\right)^{27}< 0\) trong khi \(\left(-27\right)^{32}>0\) nên đương nhiên \(\left(-32\right)^{27}< \left(-27\right)^{32}\)
c) Ta thấy \(-\dfrac{3}{2}>-2\) nên \(\left(-\dfrac{3}{2}\right)^5>\left(-2\right)^5\)
7 = 3 + 4 = √9 + √16
Do 10 > 9 nên √10 > √9
17 > 16 nên √17 > √16
⇒ √10 + √17 > √9 + √16
Vậy √10 + √17 > 7
--------
(1/8)²³ = 1/(2³)²³ = 1/2⁶⁹
(1/32)¹⁶ = 1/(2⁵)¹⁶ = 1/2⁸⁰
Do 69 < 80 nên 2⁶⁹ < 2⁸⁰
⇒ 1/2⁶⁹ > 1/2⁸⁰
Vậy (1/8)²³ > (1/³²)¹⁶
--------
5 = √25
Do 27 > 25 nên √27 > √25
Vậy √27 > 5
Bài 1:
a) \(\dfrac{-17}{36}\) và \(\dfrac{23}{-48}\)
\(\dfrac{-17}{36}=\dfrac{-17.4}{36.4}=\dfrac{-68}{144}\)
\(\dfrac{23}{-48}=\dfrac{-23}{48}=\dfrac{-23.3}{144.3}=\dfrac{-69}{144}\)
Vì \(\dfrac{-68}{144}>\dfrac{-69}{144}\) nên \(\dfrac{-17}{36}>\dfrac{23}{-48}\)
b) \(\dfrac{-1}{3}\) và \(\dfrac{2}{5}\)
Vì \(\dfrac{-1}{3}\) là số âm mà \(\dfrac{2}{5}\) là số dương nên \(\dfrac{-1}{3}< \dfrac{2}{5}\)
c) \(\dfrac{2}{7}\) và \(\dfrac{5}{4}\)
Vì \(\dfrac{2}{7}< 1\) mà \(\dfrac{5}{4}>1\) nên \(\dfrac{2}{7}< \dfrac{5}{4}\)
d) \(\dfrac{267}{-268}\) và \(\dfrac{-1347}{1343}\)
\(\dfrac{267}{-268}=\dfrac{-267}{268}=\dfrac{-267.449}{268.449}=\dfrac{-119883}{120332}\)
\(\dfrac{-1347}{1343}=\dfrac{-1347.89}{1343.89}=\dfrac{-119883}{119527}\)
Vì \(\dfrac{-119883}{120332}>\dfrac{-119883}{119527}\) nên \(\dfrac{267}{-268}>\dfrac{-1347}{1343}\)
Bài 2:
\(\dfrac{5}{2}-\left(1\dfrac{3}{7}-0,4\right)=\dfrac{5}{2}-\dfrac{10}{7}-\dfrac{2}{5}=\dfrac{47}{70}\)
Ta có:
\(33^{23}>33^{22}\)
\(22^{32}< 22^{33}\)
mà:\(33^{22}=33^{2\cdot11}=\left(33^2\right)^{11}\)
\(22^{33}=22^{3\cdot11}=\left(22^3\right)^{11}\)
vậy ta chỉ cần so sánh \(33^2\) và\(22^3\)
\(33^2=1089\);\(22^3=10648\)
vậy \(33^{22}< 22^{33}\)
ta có 223<233
322=(32)11=911
233=(23)11=811
vì 9>8 nên 911>811 hay 322>233 mà 233>223
=>322>223
ta có: 2^25 - 2^24 + 2^23 = 2^23 . (2^2-2+1) = 2^23.3
2^23-2^22 + 2^21 =2^21.(2^2-2+1) = 2^21.3
=> 2^23.3 > 2^21.3
=> 2^25 - 2^24 + 2^23 > 2^23 - 2^22 + 2^21