K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{100^{10}-3+2}{100^{10}-3}=1+\dfrac{2}{100^{10}-3}\)

\(B=\dfrac{100^{10}-1+2}{100^{10}-1}=1+\dfrac{2}{100^{10}-1}\)

100^10-3<100^10-1

=>A>B

AH
Akai Haruma
Giáo viên
4 tháng 10 2024

1/

\(10A=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)

\(10B=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)

$\Rightarrow 10A< 1< 10B$

$\Rightarrow A< B$

AH
Akai Haruma
Giáo viên
4 tháng 10 2024

2/

\(C=\frac{10^{99}+5}{10^{99}-8}=1+\frac{13}{10^{99}-8}\)

\(D=\frac{10^{100}+6}{10^{100}-4}=1+\frac{10}{10^{100}-4}\)

So sánh \(\frac{13}{10^{99}-8}=\frac{130}{10^{100}-80}> \frac{130}{10^{100}-4}> \frac{10}{100^{100}-4}\)

$\Rightarrow 1+\frac{13}{10^{99}-8}> 1+\frac{10}{100^{10}-4}$

$\Rightarrow C> D$

31 tháng 10 2018

Bài giải

ta có : 10<99 =>10100<99100

31 tháng 10 2018

1.So sánh hai lũy thừa

a;10200 và 99100

b;648và1612

C;6100 và 3170

26 tháng 12 2017

b) Ta có :

D = 1030 = ( 103 )10 = 100010

B = 2100 = ( 210 )10 = 102410

Mà 100010 < 102410 => 1030 < 2100 hay D < B

Vậy D < B

26 tháng 12 2017

a) Ta có :

A = 20 + 21 + ... + 22010

=> 2A = 21 + 22 + ... + 22011

=> A = ( 21 + 22 + ... + 22011 ) - ( 20 + 21 + ... + 22010 )

=> A = 22011 - 2= 22011 - 1

Mà B = 22011 - 1 => A = B

Vậy A = B

19 tháng 7 2015

A = (1+3+ 32 + 33) + (34 + 35 + 36 + 37) +  ...+ (396 + 397  + 398 + 399)  (Có 100 số nên có 25 nhóm, mỗi nhóm có 4 số )

A = 40. 1 + 34.(1 + 3 + 32 + 33) +...+ 396.(1 + 3 + 32 + 33) = 40.1 + 40.34 + ...+ 40.396 = 40.( 1+ 34 + ... + 396)

=> A chia hết cho 4 và chia hết cho 40

D = (2 + 22 + 23 + 24 ) + (25 + 26 + 27 + 28) + ...+ (297 + 298 + 299 + 2100

D = 30 .1 + 25.  (2 + 22 + 23 + 24 ) + ... + 297.  (2 + 22 + 23 + 24 ) 

D = 30.1 + 30.25 + ...+ 30.297 = 30. (1 + 25 + ...+ 297)

=> D chia hết cho 30 nên chia hết cho 15 và D có tận cùng là 0

2) 540 = (54)10  = 62510 > 62010  => 540 > 62010

1030 = (103)10 = 100010 < 102410 = (210)10 = 2100 

333444 = (3334)111 = (34.1114)111 = 81111.111444

444333 = (4443)111 = (43.1113)111 = 64111.111333  <  81111.111444

=> 333444 > 444333

19 tháng 7 2015

Bài so sánh :

a) \(5^{40}=\left(5^4\right)^{10}=625^{10}\)

    \(620^{10}<625^{10}\)

Vậy 540  > 62010

b) 1030 = (103)10 = 100010

2100  = (210)10 = 102410

Vì 100010 < 102410  nên 1030 < 2100

c) 333444=(3.111)4.111=(34)111.(1114)111=81111. 111444

444333=(4.111)3.111=(43)111.(1113)111=64111.111333

Vì 81111>64111; 111444>111333 nên  333444 > 444333

25 tháng 9 2015

1030<2100

7 tháng 10 2020

1) Áp dụng BĐT Cauchy cho 3 số ta được: 

\(2^{30}+3^{30}+4^{30}\ge3\sqrt[3]{2^{30}\cdot3^{30}\cdot4^{30}}=3\cdot\sqrt[3]{24^{30}}=3\cdot24^{10}\)  (đã sửa đề)

\(\Rightarrow2^{30}+3^{30}+4^{30}>3\cdot24^{10}\)

2) 

a) Ta có: 

\(2001^{100}=\overline{.....1}\) ; \(2002^{101}=\left(2002^4\right)^{25}\cdot2002=\overline{.....6}\cdot2002=\overline{.....2}\)

\(2003^{102}=\left(2003^4\right)^{25}\cdot2003^2=\overline{.....1}\cdot\overline{.....9}=\overline{.....9}\)

\(\Rightarrow2001^{100}+2002^{101}+2003^{102}=\overline{.....2}\)

Vậy cstc là 2

b) \(3+3^2+3^3+...+3^{100}\)

\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(=3\left(1+3+3^2+3^3\right)+...+3^{97}\left(1+3+3^2+3^3\right)\)

\(=3\cdot40+...+3^{97}\cdot40\)

\(=40\cdot\left(3+...+3^{97}\right)\)

=> cstc là 0

1 tháng 8 2017

Bạn nào làm đầy đủ và nhanh mình k cho