Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
\(10A=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)
$\Rightarrow 10A< 1< 10B$
$\Rightarrow A< B$
2/
\(C=\frac{10^{99}+5}{10^{99}-8}=1+\frac{13}{10^{99}-8}\)
\(D=\frac{10^{100}+6}{10^{100}-4}=1+\frac{10}{10^{100}-4}\)
So sánh \(\frac{13}{10^{99}-8}=\frac{130}{10^{100}-80}> \frac{130}{10^{100}-4}> \frac{10}{100^{100}-4}\)
$\Rightarrow 1+\frac{13}{10^{99}-8}> 1+\frac{10}{100^{10}-4}$
$\Rightarrow C> D$
1.So sánh hai lũy thừa
a;10200 và 99100
b;648và1612
C;6100 và 3170
b) Ta có :
D = 1030 = ( 103 )10 = 100010
B = 2100 = ( 210 )10 = 102410
Mà 100010 < 102410 => 1030 < 2100 hay D < B
Vậy D < B
a) Ta có :
A = 20 + 21 + ... + 22010
=> 2A = 21 + 22 + ... + 22011
=> A = ( 21 + 22 + ... + 22011 ) - ( 20 + 21 + ... + 22010 )
=> A = 22011 - 20 = 22011 - 1
Mà B = 22011 - 1 => A = B
Vậy A = B
A = (1+3+ 32 + 33) + (34 + 35 + 36 + 37) + ...+ (396 + 397 + 398 + 399) (Có 100 số nên có 25 nhóm, mỗi nhóm có 4 số )
A = 40. 1 + 34.(1 + 3 + 32 + 33) +...+ 396.(1 + 3 + 32 + 33) = 40.1 + 40.34 + ...+ 40.396 = 40.( 1+ 34 + ... + 396)
=> A chia hết cho 4 và chia hết cho 40
D = (2 + 22 + 23 + 24 ) + (25 + 26 + 27 + 28) + ...+ (297 + 298 + 299 + 2100)
D = 30 .1 + 25. (2 + 22 + 23 + 24 ) + ... + 297. (2 + 22 + 23 + 24 )
D = 30.1 + 30.25 + ...+ 30.297 = 30. (1 + 25 + ...+ 297)
=> D chia hết cho 30 nên chia hết cho 15 và D có tận cùng là 0
2) 540 = (54)10 = 62510 > 62010 => 540 > 62010
1030 = (103)10 = 100010 < 102410 = (210)10 = 2100
333444 = (3334)111 = (34.1114)111 = 81111.111444
444333 = (4443)111 = (43.1113)111 = 64111.111333 < 81111.111444
=> 333444 > 444333
Bài so sánh :
a) \(5^{40}=\left(5^4\right)^{10}=625^{10}\)
\(620^{10}<625^{10}\)
Vậy 540 > 62010
b) 1030 = (103)10 = 100010
2100 = (210)10 = 102410
Vì 100010 < 102410 nên 1030 < 2100
c) 333444=(3.111)4.111=(34)111.(1114)111=81111. 111444
444333=(4.111)3.111=(43)111.(1113)111=64111.111333
Vì 81111>64111; 111444>111333 nên 333444 > 444333
1) Áp dụng BĐT Cauchy cho 3 số ta được:
\(2^{30}+3^{30}+4^{30}\ge3\sqrt[3]{2^{30}\cdot3^{30}\cdot4^{30}}=3\cdot\sqrt[3]{24^{30}}=3\cdot24^{10}\) (đã sửa đề)
\(\Rightarrow2^{30}+3^{30}+4^{30}>3\cdot24^{10}\)
2)
a) Ta có:
\(2001^{100}=\overline{.....1}\) ; \(2002^{101}=\left(2002^4\right)^{25}\cdot2002=\overline{.....6}\cdot2002=\overline{.....2}\)
\(2003^{102}=\left(2003^4\right)^{25}\cdot2003^2=\overline{.....1}\cdot\overline{.....9}=\overline{.....9}\)
\(\Rightarrow2001^{100}+2002^{101}+2003^{102}=\overline{.....2}\)
Vậy cstc là 2
b) \(3+3^2+3^3+...+3^{100}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=3\left(1+3+3^2+3^3\right)+...+3^{97}\left(1+3+3^2+3^3\right)\)
\(=3\cdot40+...+3^{97}\cdot40\)
\(=40\cdot\left(3+...+3^{97}\right)\)
=> cstc là 0
\(A=\dfrac{100^{10}-3+2}{100^{10}-3}=1+\dfrac{2}{100^{10}-3}\)
\(B=\dfrac{100^{10}-1+2}{100^{10}-1}=1+\dfrac{2}{100^{10}-1}\)
100^10-3<100^10-1
=>A>B