Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có : \(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)
\(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)(đpcm)
b) Ta có : \(\sqrt{625}-\frac{1}{\sqrt{5}}=25-\frac{1}{\sqrt{5}}>25-\frac{1}{\sqrt{6}}=24-\frac{1}{\sqrt{6}}+1=\sqrt{576}-\frac{1}{\sqrt{6}}+1\)
\(\Rightarrow\sqrt{625}-\frac{1}{\sqrt{5}}>\sqrt{576}-\frac{1}{\sqrt{6}}+1\)(đpcm)
Ta thấy:
\(\sqrt{40+2}< \sqrt{49}< 7\) (1)
\(\sqrt{40}>\sqrt{36}>6\) (2)
\(\sqrt{2}>\sqrt{1}>1\) (3)
Từ (2) và (3)
\(\sqrt{40}+\sqrt{2}>6+1>7\) (4)
Từ (1) và (4)
\(\Rightarrow\sqrt{40+2}< \sqrt{40}+\sqrt{2}\)
Vậy \(\sqrt{40+2}< \sqrt{40}+\sqrt{2}\)
Bài 3 :
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)
\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)
\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)
\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)
.....
\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)
\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
\(\sqrt{\frac{\left(-5\right)^2}{7}}=\frac{\sqrt{\left(-5\right)^2}}{\sqrt{7}}=\frac{|5|}{\sqrt{7}}=\frac{5\sqrt{7}}{7}\)
\(\frac{-\sqrt{\left(-5\right)^2}}{-\sqrt{49}}=\frac{\sqrt{\left(-5\right)^2}}{\sqrt{49}}=\frac{|5|}{|7|}=\frac{5}{7}\)
\(\frac{5\sqrt{7}}{7}>\frac{5}{7}\leftrightarrow\sqrt{\frac{\left(-5\right)^2}{7}}>\frac{-\sqrt{\left(-5\right)^2}}{-\sqrt{49}}\)
Mỗi câu hỏi bạn chỉ đăng 1 bài toán lên thôi nha nếu muốn nhận được câu trả lời nhanh
Câu 1 :
\(B=\frac{1}{2\left(n-1\right)^2+3}\) có GTLN
<=> 2(n - 1)2 + 3 có GTNN
Ta có : (n - 1)2 > 0 => 2(n - 1)2 > 0 => 2(n - 1)2 + 3 > 3
=> GTNN của 2(n - 1)2 + 3 là 3 <=> (n - 1)2 = 0 <=> n = 1
Vậy B có GTLN là \(\frac{1}{3}\) <=> n = 1
x-3=k^2
x=k^2+3
x+1-k=t^2
k^2+4-k=t^2
(2k-1)^2+15=4t^2
(2k-1-2t)(2k-1+2t)=-15=-1.15=-3*5
---giải phương trình nghiệm nguyên với k,t---
TH1. [2(k-t)-1][2(k+t)-1]=-1.15
2(k-t)-1=-1=> k=t
4t-1=15=>t=4 nghiệm (-4) loại luôn
với k=4=> x=19 thử lại B=căn (19+1-can(19-3))=can(20-4)=4 nhận
TH2. mà có bắt tìm hết đâu
x=19 ok rồi
ô hay vừa giải xong mà
x=k^2+3
với k là nghiệm nguyên của phương trình
k^2-k+4=t^2
bắt tìm hết hạy chỉ một
x=19 là một nghiệm