Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(\dfrac{3}{4}=\dfrac{3x4}{4x4}=\dfrac{12}{16},\dfrac{6}{7}=\dfrac{6x2}{7x2}=\dfrac{12}{14}\)
Do 16 > 14 => \(\dfrac{12}{16}< \dfrac{12}{14}hay\dfrac{3}{4}< \dfrac{6}{7}\)
a) 34=3x44x4=1216,67=6x27x2=121434=3x44x4=1216,67=6x27x2=1214
Do 16 > 14 => 1216<1214hay34<67

Ta có :
\(\frac{2016}{2017}>\frac{2016}{2017+2018+2019}\)
\(\frac{2017}{2018}>\frac{2017}{2017+2018+2019}\)
\(\frac{2018}{2019}>\frac{2018}{2017+2018+2019}\)
\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}>\) \(\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)
\(\Rightarrow P>\frac{2016+2017+2018}{2017+2018+2019}\)
\(\Rightarrow P>Q\)
Chúc bạn học tốt !!!
vì P có các số bé hơn 1 còn Q có các số lớn hơn 1 =>P<Q
Vậy P<Q.
mình làm hơi tắt xin bạn thông cảm bạn tự viết các số có trong P;Q ra nhá

a/ \(A=2018\cdot2018\)
\(=\left(2019-1\right)\cdot2018=2019\cdot2018-2018\)
\(B=2017\cdot2019\)
\(=\left(2018-1\right)\cdot2019=2018\cdot2019-2019\)
\(\Rightarrow A>B\)
b/
\(A=2018\cdot2019\)
\(=\left(2017+1\right)\cdot2019=2017\cdot2019+2019\)
\(B=2017\cdot2020\)
\(=2017\cdot\left(2019+1\right)=2017\cdot2019+2017\)
\(\Rightarrow A>B\)

1. \(G=2016.2016=\left(2014+2\right)\left(2018-2\right)=2014.2018-4028+4036-4=2014.2018+4\)
vì 2014.2018+4 >2014.2018
=> G>H
\(\frac{2016.2016}{2013.2019}=\frac{\left(2013+3\right)\left(2019-3\right)}{2013.2019}=\frac{2013.2019-6039+6057-9}{2013.2019}=\frac{2013.2019+9}{2013.2019}=1+\frac{9}{2013.2019}\)
vì \(1+\frac{9}{2013.2019}>1\)
\(\frac{2016.2016}{2013.2019}>1\)

a) \(\frac{120}{115}-1=\frac{5}{115}\) ; \(1-\frac{175}{170}=\frac{5}{170}\)
Vì \(\frac{5}{115}>\frac{5}{170}\) nên \(\frac{120}{115}<\frac{175}{170}\)

Ta có : \(0< \frac{2017}{2018}< 1\) nên \(\frac{2017}{2018}>\frac{2017+2019}{2018+2019}\)(1)
\(0< \frac{2018}{2019}< 1\) nên \(\frac{2018}{2019}>\frac{2018+2018}{2018+2019}\) (2)
Cộng vế theo vế 1 và 2 ta được : \(B=\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018+2018+2019}{2018+2019}=\frac{2017+2018}{2018 +2019}+1=A+1>A\)
Vậy B>A
F={x e N|x <6}