\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2014^2}\)

với Q=...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2016

\( P=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2014^2}< Q= 1\frac{3}{4}\)

23 tháng 4 2016

hắt sì hơi

28 tháng 2 2018

\(P=1+\frac{1}{2^2}+...+\frac{1}{2014^2}>1+\frac{1}{2^2}.1007\)

\(\Rightarrow P>1+\frac{1007}{4}\)

Vì \(P>1+\frac{1007}{4}\)

Mà \(1+\frac{1007}{4}>1+\frac{3}{4}\)

=>P>Q

17 tháng 2 2018

\(S=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{2014}{5^{2014}}\)
\(5S=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{2014}{5^{2013}}\)
\(\Rightarrow5S-S=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}-\frac{2014}{5^{2014}}\)
\(S=\frac{1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}-\frac{2014}{5^{2014}}}{4}\)
Xét \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}\)
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}\)
\(5A-A=1-\frac{1}{5^{2013}}\Leftrightarrow A=\frac{1-\frac{1}{5^{2013}}}{4}=\frac{1}{4}-\frac{1}{4.5^{2013}}\)
\(\Rightarrow S=\frac{1+\frac{1}{4}-\left(\frac{1}{4.5^{2013}}+\frac{2014}{5^{2014}}\right)}{4}=\frac{5}{16}-\frac{\frac{1}{4.5^{2013}}+\frac{2014}{5^{2014}}}{4}< \frac{1}{3}\)

 

4 tháng 10 2018

P = 1+1/2x2+1/3x3+...+1/2014x2014.

 Mà: 1/2x2 bé hơn 1/1x2; 1/3x3 bé hơn 1/2x3; 1/2014x2014 bé hơn 1/2013x2014.

P = 1+1/2x2+1/3x3+...+1/2014x2014 bé hơn 1+1/1x2+1/2x3+...+1/2013x2014 = 1+1-1/2+1/2-1/3+...+1/2013-1/2014 = 1+1-1/2014 = 4027/2014;                    Q = 7/4.(Bạn tự tính nhá)

 Suy ra P lớn hơn Q.

        

24 tháng 6 2020

 P \(=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\) 

P\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{50^2-1}{50^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)

P\(=\frac{\left(1.2.3...49\right).\left(3.4.5...51\right)}{\left(2.3.4...50\right).\left(2.3.4...50\right)}\)

P\(=\frac{1.51}{50.2}=\frac{51}{100}\)