Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(M=\dfrac{100^{100}+1}{100^{99}+1}\)
\(\Rightarrow\dfrac{M}{100}=\dfrac{100^{100}+1}{100\cdot\left(100^{99}+1\right)}\)
\(\Rightarrow\dfrac{M}{100}=\dfrac{100^{100}+1}{100^{100}+100}\)
\(\Rightarrow\dfrac{M}{100}=1-\dfrac{99}{100^{100}+100}\)
\(N=\dfrac{100^{101}+1}{100^{100}+1}\)
\(\Rightarrow\dfrac{N}{100}=\dfrac{100^{101}+1}{100\cdot\left(100^{100}+1\right)}\)
\(\Rightarrow\dfrac{N}{100}=\dfrac{100^{101}+1}{100^{101}+100}\)
\(\Rightarrow\dfrac{N}{100}=1-\dfrac{99}{100^{101}+100}\)
Mà: \(100^{101}>100^{100}\)
\(\Rightarrow100^{101}+100>100^{100}+100\)
\(\Rightarrow\dfrac{99}{100^{101}+100}< \dfrac{99}{100^{100}+100}\)
\(\Rightarrow1-\dfrac{99}{101^{101}+100}< 1-\dfrac{99}{100^{100}+100}\)
\(\Rightarrow\dfrac{N}{100}< \dfrac{M}{100}\)
\(\Rightarrow N< M\)
M= \(\frac{100^{100}+1}{100^{99}+1}=\frac{100^{100}+100-99}{100^{99}+1}=\frac{100^{100}+100}{100^{99}+1}-\frac{99}{100^{99}+1}=\frac{100.\left(100^{99}+1\right)}{100^{99}+1}-\frac{99}{100^{99}+1}\)
\(=100-\frac{99}{100^{99}+1}\)
N= \(\frac{100^{101}+1}{100^{100}+1}=\frac{100^{101}+100-99}{100^{100}+1}=\frac{100^{101}+100}{100^{100}+1}-\frac{99}{100^{100}+1}\)
\(=\frac{100.\left(100^{100}+1\right)}{100^{100}+1}-\frac{99}{100^{100}+1}=100-\frac{99}{100^{100}+1}\)
Vi 100100+1>10099+1
=> \(\frac{99}{100^{99}+1}>\frac{99}{100^{100}+1}\)
=> \(100-\frac{99}{100^{99}+1}
1
\(A=\frac{2019^{2019}+1}{2019^{2020}+1}< \frac{2019^{2019}+1+2018}{2019^{2020}+1+2018}=\frac{2019^{2019}+2019}{2019^{2020}+2019}=\frac{2019\left(2019^{2018}+1\right)}{2019\left(2019^{2019}+1\right)}\)
\(=\frac{2019^{2018}+1}{2019^{2019}+1}\)
2
\(M=\frac{100^{101}+1}{100^{100}+1}< \frac{100^{101}+1+99}{100^{100}+1+99}=\frac{100^{101}+100}{100^{100}+100}=\frac{100\left(100^{100}+1\right)}{100\left(100^{99}+1\right)}\)
\(=\frac{100^{100}+1}{100^{99}+1}=N\)
a) Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a;b;m \(\in\) N*)
Ta có:
\(A=\frac{2008^{2008}+1}{2008^{2009}+1}< \frac{2008^{2008}+1+2007}{2009^{2009}+1+2007}\)
\(A< \frac{2008^{2008}+2008}{2008^{2009}+2008}\)
\(A< \frac{2008.\left(2008^{2007}+1\right)}{2008.\left(2008^{2008}+1\right)}=\frac{2008^{2007}+1}{2008^{2008}+1}=B\)
=> A < B
b) Áp dụng \(\frac{a}{b}>1\Leftrightarrow\frac{a}{b}>\frac{a+m}{b+m}\) (a;b;m \(\in\) N*)
Ta có:
\(N=\frac{100^{101}+1}{100^{100}+1}>\frac{100^{101}+1+99}{100^{100}+1+99}\)
\(N>\frac{100^{101}+100}{100^{100}+100}\)
\(N>\frac{100.\left(100^{100}+1\right)}{100.\left(100^{99}+1\right)}=\frac{100^{100}+1}{100^{99}+1}=M\)
=> M > N
(10099+9999)100=10099x100+9999x100
(100100+99100)99=100100x99+99100x99
Vì100100x99+99100x99=10099x100+9999x100
=>M=N
Các bạn nhớ nha !!!
c: \(100C=\dfrac{100^{100}+100}{100^{100}+1}=1+\dfrac{99}{100^{100}+1}\)
\(100D=\dfrac{100^{101}+100}{100^{101}+1}=1+\dfrac{99}{100^{101}+1}\)
100^100+1<100^101+1
=>\(\dfrac{99}{100^{100}+1}>\dfrac{99}{100^{101}+1}\)
=>100C>100D
=>C>D
b: \(2020E=\dfrac{2020^{2022}+2020}{2020^{2022}+1}=1+\dfrac{2019}{2020^{2022}+1}\)
\(2020F=\dfrac{2020^{2021}+2020}{2020^{2021}+1}=1+\dfrac{2019}{2020^{2021}+1}\)
2020^2022+1>2020^2021+1(Do 2022>2021)
=>\(\dfrac{2019}{2020^{2022}+1}< \dfrac{2019}{2020^{2021}+1}\)
=>2020E<2020F
=>E<F
A=100^101+1/100^100+1
B=100^100+1/100^99+1
A<100^101+1+99/100^100+1+99
A<100^101+100/100^100+100
A<100.(100^100+1)/100.(100^99+1)
A<100^100+1/100^99+1=B
=> A<B
Vậy A<B
\(M=\frac{100^{100}+1}{100^{99}+1}=\frac{100^{100}+100-99}{100^{99}+1}=100-\frac{99}{100^{99}+1}\)
\(N=\frac{100^{101}+1}{100^{100}+1}=\frac{100^{101}+100-99}{100^{100}+1}=100-\frac{99}{100^{100}+1}\)
\(\frac{99}{100^{99}+1}>\frac{99}{100^{100}+1}\Rightarrow A< B\)