K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
1 tháng 8 2021

\(M=\frac{100^{100}+1}{100^{99}+1}=\frac{100^{100}+100-99}{100^{99}+1}=100-\frac{99}{100^{99}+1}\)

\(N=\frac{100^{101}+1}{100^{100}+1}=\frac{100^{101}+100-99}{100^{100}+1}=100-\frac{99}{100^{100}+1}\)

\(\frac{99}{100^{99}+1}>\frac{99}{100^{100}+1}\Rightarrow A< B\)

21 tháng 9 2023

Ta có:

\(M=\dfrac{100^{100}+1}{100^{99}+1}\)

\(\Rightarrow\dfrac{M}{100}=\dfrac{100^{100}+1}{100\cdot\left(100^{99}+1\right)}\)

\(\Rightarrow\dfrac{M}{100}=\dfrac{100^{100}+1}{100^{100}+100}\)

\(\Rightarrow\dfrac{M}{100}=1-\dfrac{99}{100^{100}+100}\) 

\(N=\dfrac{100^{101}+1}{100^{100}+1}\)

\(\Rightarrow\dfrac{N}{100}=\dfrac{100^{101}+1}{100\cdot\left(100^{100}+1\right)}\)

\(\Rightarrow\dfrac{N}{100}=\dfrac{100^{101}+1}{100^{101}+100}\)

\(\Rightarrow\dfrac{N}{100}=1-\dfrac{99}{100^{101}+100}\)

Mà: \(100^{101}>100^{100}\)

\(\Rightarrow100^{101}+100>100^{100}+100\)

\(\Rightarrow\dfrac{99}{100^{101}+100}< \dfrac{99}{100^{100}+100}\)

\(\Rightarrow1-\dfrac{99}{101^{101}+100}< 1-\dfrac{99}{100^{100}+100}\)

\(\Rightarrow\dfrac{N}{100}< \dfrac{M}{100}\)

\(\Rightarrow N< M\)

20 tháng 10 2015

M= \(\frac{100^{100}+1}{100^{99}+1}=\frac{100^{100}+100-99}{100^{99}+1}=\frac{100^{100}+100}{100^{99}+1}-\frac{99}{100^{99}+1}=\frac{100.\left(100^{99}+1\right)}{100^{99}+1}-\frac{99}{100^{99}+1}\)

\(=100-\frac{99}{100^{99}+1}\)

N= \(\frac{100^{101}+1}{100^{100}+1}=\frac{100^{101}+100-99}{100^{100}+1}=\frac{100^{101}+100}{100^{100}+1}-\frac{99}{100^{100}+1}\)

\(=\frac{100.\left(100^{100}+1\right)}{100^{100}+1}-\frac{99}{100^{100}+1}=100-\frac{99}{100^{100}+1}\)

Vi 100100+1>10099+1

=> \(\frac{99}{100^{99}+1}>\frac{99}{100^{100}+1}\)

=> \(100-\frac{99}{100^{99}+1}

20 tháng 10 2015

uk ai cũng có lúc nhầm mà chẳng sao đâu bạn ak

10 tháng 7 2019

1

\(A=\frac{2019^{2019}+1}{2019^{2020}+1}< \frac{2019^{2019}+1+2018}{2019^{2020}+1+2018}=\frac{2019^{2019}+2019}{2019^{2020}+2019}=\frac{2019\left(2019^{2018}+1\right)}{2019\left(2019^{2019}+1\right)}\)

\(=\frac{2019^{2018}+1}{2019^{2019}+1}\)

10 tháng 7 2019

2

\(M=\frac{100^{101}+1}{100^{100}+1}< \frac{100^{101}+1+99}{100^{100}+1+99}=\frac{100^{101}+100}{100^{100}+100}=\frac{100\left(100^{100}+1\right)}{100\left(100^{99}+1\right)}\)

\(=\frac{100^{100}+1}{100^{99}+1}=N\)

24 tháng 9 2016

a) Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a;b;m \(\in\) N*)

Ta có:

\(A=\frac{2008^{2008}+1}{2008^{2009}+1}< \frac{2008^{2008}+1+2007}{2009^{2009}+1+2007}\)

\(A< \frac{2008^{2008}+2008}{2008^{2009}+2008}\)

\(A< \frac{2008.\left(2008^{2007}+1\right)}{2008.\left(2008^{2008}+1\right)}=\frac{2008^{2007}+1}{2008^{2008}+1}=B\)

=> A < B

b) Áp dụng \(\frac{a}{b}>1\Leftrightarrow\frac{a}{b}>\frac{a+m}{b+m}\) (a;b;m \(\in\) N*)

Ta có: 

\(N=\frac{100^{101}+1}{100^{100}+1}>\frac{100^{101}+1+99}{100^{100}+1+99}\)

\(N>\frac{100^{101}+100}{100^{100}+100}\)

\(N>\frac{100.\left(100^{100}+1\right)}{100.\left(100^{99}+1\right)}=\frac{100^{100}+1}{100^{99}+1}=M\)

=> M > N

Cảm ơn bạn nhiều 

1 tháng 8 2016

(10099+9999)100=10099x100+9999x100

(100100+99100)99=100100x99+99100x99

Vì100100x99+99100x99=10099x100+9999x100

=>M=N

Các bạn nhớ nha !!!

22 tháng 3 2017

các cậu kết bạn với mình nha

c: \(100C=\dfrac{100^{100}+100}{100^{100}+1}=1+\dfrac{99}{100^{100}+1}\)

\(100D=\dfrac{100^{101}+100}{100^{101}+1}=1+\dfrac{99}{100^{101}+1}\)

100^100+1<100^101+1

=>\(\dfrac{99}{100^{100}+1}>\dfrac{99}{100^{101}+1}\)

=>100C>100D

=>C>D

b: \(2020E=\dfrac{2020^{2022}+2020}{2020^{2022}+1}=1+\dfrac{2019}{2020^{2022}+1}\)

\(2020F=\dfrac{2020^{2021}+2020}{2020^{2021}+1}=1+\dfrac{2019}{2020^{2021}+1}\)

2020^2022+1>2020^2021+1(Do 2022>2021)

=>\(\dfrac{2019}{2020^{2022}+1}< \dfrac{2019}{2020^{2021}+1}\)

=>2020E<2020F

=>E<F

15 tháng 8 2023

hơi vô lí

 

21 tháng 2 2023

A=100^101+1/100^100+1

B=100^100+1/100^99+1

A<100^101+1+99/100^100+1+99

A<100^101+100/100^100+100

A<100.(100^100+1)/100.(100^99+1)

A<100^100+1/100^99+1=B

=> A<B

Vậy A<B

17 tháng 9 2017

99/100< 100/101