Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét dãy tích P1 ta thấy 2 thừa số đều âm
=> P1 dương <=> P1 > 0
Xét dãy tích P2 ta thấy có 3 thừa số âm
=> P2 âm <=> P2 < 0
XXets dãy P3 thấy trong đó có một thừa số là \(\frac{0}{11}=0\)
=> P3 = 0
Vậy P2 < P3 < P1
Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)
\(=\frac{1.2....18.19}{2.3...19.20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
Vậy A > 1/21
\(\left(\frac{1}{27}\right)^{23}=\frac{1^{23}}{27^{23}}=\frac{1}{\left(3^3\right)^{23}}=\frac{1}{3^{69}}\)
\(\left(\frac{1}{81}\right)^{16}=\frac{1^{16}}{81^{16}}=\frac{1}{\left(3^4\right)^{16}}=\frac{1}{3^{64}}\)
Vì 369 > 364
\(\frac{1}{3^{69}}< \frac{1}{3^{64}}\)
\(\left(\frac{1}{27}\right)^{23}=\frac{1^{23}}{27^{23}}=\frac{1}{\left(3^3\right)^{23}}=\frac{1}{3^{69}}\)
\(\left(\frac{1}{81}\right)^{16}=\frac{1^{16}}{81^{16}}=\frac{1}{\left(3^4\right)^{16}}=\frac{1}{3^{64}}\)
Vì 369 > 364
=> \(\frac{1}{3^{69}}< \frac{1}{3^{64}}\)
=> \(\left(\frac{1}{27}\right)^{23}< \left(\frac{1}{81}\right)^{16}\)
1) Ta có: \(\left|9y-1\right|+\left(2x+3\right)^2=0\)
Mà \(\hept{\begin{cases}\left|9y-1\right|\ge0\\\left(2x+3\right)^2\ge0\end{cases}}\left(\forall x,y\right)\)
=> \(\left|9y-1\right|+\left(2x+3\right)^2\ge0\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|9y-1\right|=0\\\left(2x+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}9y-1=0\\2x+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{1}{9}\end{cases}}\)
Vậy \(\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{1}{9}\end{cases}}\)
2)
a) Ta có: \(\left[\left(-\frac{1}{3}\right)^7\right]^4=\left(\frac{1}{3}\right)^{28}=\frac{1}{3^{28}}\)
và \(\left[\left(-\frac{1}{2}\right)^{14}\right]^2=\left(\frac{1}{2}\right)^{28}=\frac{1}{2^{28}}\)
Vì \(\frac{1}{3^{28}}< \frac{1}{2^{28}}\Rightarrow\left[\left(-\frac{1}{3}\right)^7\right]^4< \left[\left(-\frac{1}{2}\right)^{14}\right]^2\)
b) Ta có: \(\left(-\frac{2}{3}\right)^{12}=\left[\left(-\frac{2}{3}\right)^2\right]^6=\left(\frac{4}{9}\right)^6\)
Ta thấy \(0< \frac{4}{9}< 1\)\(\Rightarrow\left(\frac{4}{9}\right)^6>\left(\frac{4}{9}\right)^7\)
\(\Rightarrow\left(-\frac{2}{3}\right)^{12}>\left(\frac{4}{9}\right)^7\)
Ta có : \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{19}{20}\)
\(=\frac{1.2.3.....19}{2.3.4.....20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
Ta có \(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{2014^2}\right)\)
\(=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)...\left(\frac{2014^2-1}{2014^2}\right)\)
\(=\frac{\left(2-1\right)\left(2+1\right)}{2^2}.\frac{\left(3-1\right)\left(3+1\right)}{3^2}...\frac{\left(2014-1\right)\left(2014+1\right)}{2014^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{2013.2015}{2014.2014}\)
\(=\frac{1.2...2013}{2.3...2014}.\frac{3.4...2015}{2.3...2014}\)
\(=\frac{1}{2014}.\frac{2015}{2}\)
\(=\frac{2015}{2014.2}>\frac{1}{2}\)hay -A>1/2
=>\(A< \frac{-1}{2}\)hay A<B
Ta có : \(\frac{1}{2}>\frac{1}{3}\)
\(\Rightarrow\left(\frac{1}{2}\right)^{29}>\left(\frac{1}{3}\right)^{29}>\left(\frac{1}{3}\right)^{23}\)
\(\Rightarrow\left(\frac{1}{2}\right)^{29}>\left(\frac{1}{3}\right)^{23}\)