\(x=\left(\frac{1}{2}\right)^{225}\) và \(y=\left(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2015

(1/2)1500=(1/26)250=(1/64)250

Do 1/16>1/64 =>(1/16)250>(1/64)250

Vậy (1/16)250>(1/2)1500

17 tháng 6 2015

\(\left(\frac{1}{16}\right)^{250}\) và \(\left(\frac{1}{2}\right)^{1500}\)

=> \(\left(\frac{1}{16}\right)^{250}\) và \(\left(\left(\frac{1}{2}\right)^6\right)^{250}\)

=> \(\frac{1}{16}\) và \(\left(\frac{1}{2}\right)^6\)

=> \(\frac{1}{16}\) và \(\frac{1}{64}\)

=>  \(\frac{1}{16}\) >  \(\frac{1}{64}\)  hay  \(\left(\frac{1}{16}\right)^{250}\) >  \(\left(\frac{1}{2}\right)^{1500}\)

 

14 tháng 2 2016

ý b anh biết làm nè 

14 tháng 2 2016

ủng hộ mình lên 210 diểm nha 

22 tháng 9 2019

3)

\(\left(\frac{1}{2}\right)^{x+1}=\frac{1}{16}\)

\(\left(\frac{1}{2}\right)^{x+1}=\left(\frac{1}{2}\right)^4\)

\(x+1=4\)

\(x=4-1\)

\(x=3\)

Vậy \(x=3.\)

Chúc bạn học tốt!

5 tháng 7 2015

a) theo tính chất của dãy tỉ số bằng nhau có 

\(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=\frac{x-y-z-x+y-z-x-y+z}{x+y+z}=\frac{-\left(x+y+z\right)}{x+y+z}=-1\)

=> x - y - z = - x  => 2.x = y + z

    y - x - z = - y  => 2.y = x+z

    z - x - y = - z => 2.z = x+y

Ta có: \(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)=\frac{x+y}{x}.\frac{y+z}{y}.\frac{z+x}{z}=\frac{2z}{x}.\frac{2x}{y}.\frac{2y}{z}=\frac{2xyz}{xyz}=2\)

b) Vì \(\left|x+3y-1\right|\ge0\)\(-3\left|y+3\right|\le0\)

=> \(\left|x+3y-1\right|=-3\left|y+3\right|\) khi \(\left|x+3y-1\right|=-3\left|y+3\right|=0\)

=> x+ 3y - 1 = 0 và y + 3 = 0

=> x = 1 - 3y và y = -3 => x = 1- 3(-3) = 10; y = -3

=> C = 4.102.(-3) + 2.10.(-3)2 - (-3)2 = -1029