Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=\left(15^2\right)^{60}:25^{60}\)
\(a=225^{60}:25^{60}\)
\(a=\left(225:25\right)^{60}=9^{60}\)
\(b=2^{45}.2^{15}.2^{120}\)
\(b=2^{180}=8^{60}\)
vì \(8^{60}< 9^{60}\)nên b<a
1,\(\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^{-4}\)
\(\Rightarrow\)2x+7=-4
2x=-11
x=-5,5
Bài làm:
Ta có: \(a=15^{120}\div25^{60}\)
\(a=15^{120}\div5^{120}\)
\(a=3^{120}=9^{60}\)
và \(b=2^{45}.2^{15}.4^{60}\)
\(b=2^{60}.2^{120}\)
\(b=2^{180}=8^{60}\)
Mà \(9^{60}>8^{60}\Rightarrow a>b\)
a) ta có A=\(15^{120}:25^{60}=3^{120}.5^{120}:5^{120}=3^{120}=9^{60}\)
B=\(2^{45}.2^{15}.4^{60}=2^{60}.2^{120}=2^{180}=8^{60}\)
-> A<B
b) bạn chỉ cần tính từng cái ra là dc ý ,ak dễ lắm nếu bạn chăm chỉ
a) Ta có: \(25^{15}=\left(5^2\right)^{15}=5^{30}\)
\(8^{10}.3^{30}=\left(2^3\right)^{10}.3^{30}\)\(=2^{30}.3^{30}=6^{30}\)
Vì \(5^{30}< 6^{30}\)nên \(25^{15}< 8^{10}.3^{30}\)
b) Ta có: \(\frac{4^{15}}{7^{30}}=\frac{\left(2^2\right)^{15}}{7^{30}}=\frac{2^{30}}{7^{30}}\)
\(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}=\frac{\left(2^3\right)^{10}.3^{30}}{7^{30}.\left(2^2\right)^{15}}=\frac{2^{30}.3^{30}}{7^{30}.2^{30}}=\frac{3^{30}}{7^{30}}\)
Vì \(2^{30}< 3^{30}\)nên \(\frac{2^{30}}{7^{30}}< \frac{3^{30}}{7^{30}}\)hay \(\frac{4^{15}}{7^{30}}< \frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)
_Học tốt_
\(4^{x+1}.2=32\)
\(4^{x+1}=32:2\)
\(4^{x+1}=16\)
\(4^{x+1}=4^2\)
\(\Rightarrow x+1=2\)
\(\Rightarrow x=1\)
vậy \(x=1\)
\(\left(x-\frac{2}{3}\right)^2=\frac{25}{81}\)
\(\left(x-\frac{2}{3}\right)^2=\left(\frac{5}{9}\right)^2\)
\(\Rightarrow x-\frac{2}{3}=\frac{5}{9}\)
\(\Rightarrow x=\frac{11}{9}\)
vậy \(x=\frac{11}{9}\)
\(500^{300}=\left(500^3\right)^{100}=125000000^{100}\)
\(300^{500}=\left(300^5\right)^{100}\)
vì \(\left(500^3\right)^{100}< \left(300^3\right)^{100}\)nên\(500^{300}< 300^{500}\)
\(4^{45}=\left(4^9\right)^5=262144^5\)
\(3^{60}=\left(3^{12}\right)^5=531441^5\)
vì \(262144^5< 531441^5\) nên \(4^{45}< 3^{60}\)
\(a=15^{120}:25^{60}\)
\(a=3^{120}.5^{120}:\left(5^2\right)^{60}\)
\(a=3^{120}.5^{120}:5^{120}\)
\(a=3^{120}\)
\(b=2^{45}.2^{15}.4^{60}\)
\(b=2^{60}.\left(2^2\right)^{60}\)
\(b=2^{60}.2^{120}\)
\(b=2^{180}\)
ta co \(a=3^{120}=\left(3^2\right)^{60}=9^{60}\)
\(b=2^{180}=\left(2^3\right)^{60}=8^{60}\)
vi \(9^{60}>8^{60}\) nen \(3^{120}>2^{180}\)
vay \(a>b\)