Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{a}{b}=\frac{a.\left(b+2012\right)}{b.\left(b+2012\right)}=\frac{ab+a.2012}{b.\left(b+2012\right)}\)
\(\frac{a+2012}{b+2012}=\frac{b.\left(a+2012\right)}{b.\left(b+2012\right)}=\frac{ab+b.2012}{b.\left(b+2012\right)}\)
Vì a<0<b=>a<b=>a.2012<b.2012
=>\(\frac{ab+a.2012}{b.\left(b+2012\right)}
Ta thấy khoảng cách từ 0 đến điểm \(\sqrt 2 \) bằng \(\sqrt 2 \).
Khoảng cách từ 0 đến điểm -\(\sqrt 2 \) bằng \(\sqrt 2 \)
Vậy khoảng cách từ 0 đến hai điểm \(\sqrt 2 \) và \( - \sqrt 2 \) bằng nhau.
Khoảng cách từ điểm 0 đến điểm √22 là √22.
Khoảng cách từ điểm 0 đến điểm -√22 là √22.
Do đó khoảng cách từ điểm 0 đến điểm √22 và khoảng cách từ điểm 0 đến điểm −√2-2 là bằng nhau vì đều bằng √22.
Ta có: \(\frac{a}{b}=\frac{a.\left(b+1\right)}{b.\left(b+1\right)}=\frac{ab+a}{b.\left(b+1\right)}\)
\(\frac{a+1}{b+1}=\frac{b.\left(a+1\right)}{b.\left(b+1\right)}=\frac{ab+b}{b.\left(b+1\right)}\)
Xét a>b
=>\(\frac{ab+a}{b.\left(b+1\right)}>\frac{ab+b}{b.\left(b+1\right)}\)
=>\(\frac{a}{b}>\frac{a+1}{b+1}\)
Xét a<b
=>\(\frac{ab+a}{b.\left(b+1\right)}
a) Ta có: 4,(56)= 4,5656….
Vì 4,5656… > 4,56279 nên 4,(56) > 4,56279
b) Ta có:
-3,(65) = -3,6565…
Vì 3,6565… > 3,6491 nên -3,6565…< -3,6491. Do đó, -3,(65) < -3,6491;
c) 0,(21)=\(\frac{7}{{33}}\) và 0,2(12)= \(\frac{7}{{33}}\) nên 0,(21) = 0,2(12).
d) \(\sqrt 2 = 1,41421...\)< 1,42.
Qui đồng mẫu số:
a/b = a(b+2001) / b(b+2001) = ab + 2001a / b(b+2001)
a+2001 / b + 2001 = (a+2001)b / (b + 2001)b = ab + 2001b / b(b+2001)
Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
So sánh ab + 2001a với ab + 2001b
- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai
=>a/b < a+2001/b+2001
- Nếu a = b => hai phân số bằng nhau = 1
- Nếu a > b => Tử số phân số thứ nhất lớn hơn tử số phân số thứ hai
=> a/b > a+2001/ b +2001
0,431>0,43
Có :\(0,\left(43\right)\) \(\approx0,433\)
\(0,\left(431\right)\approx0,431\)
mà \(0,433>0,431\)
=> \(0,\left(43\right)>0,\left(431\right)\)