Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng ''2'' ta có;
\(\frac{n}{n+1}.\frac{n+3}{n+1}=\frac{n^2+2n+n}{n^2+2n+1}\ge1.\)
Suy ra
\(\frac{n}{n+1}\) lớn hơn \(\frac{n+1}{n+3}.\)
P/s; Sao ko ai giúp vậy huhu ToT
x thuộc : 39;40;41
tổng tất cả các phần tử của A : 39+40+41=120
Ta có: \(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}.\dfrac{1}{n+1}\)
Vậy tích hai phân số bằng hiệu của chúng
1) ta có:\(2^{150}\)= (2^3)^50=8^50
\(3^{100}\)= (3^2)^50 = 9^50
vì 8^50 < 9^50 => \(2^{150}\)<\(3^{100}\)
a) \(\dfrac{n}{3n+1}=\dfrac{2.n}{2\left(3n+1\right)}=\dfrac{2n}{6n+2}\)
Vì \(\dfrac{2n}{6n+2}< \dfrac{2n}{6n+1}\Leftrightarrow\dfrac{n}{3n+1}< \dfrac{2n}{6n+1}\)
b) Áp dụng công thức :
\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\left(a;b;m\in N\cdot\right)\)
Ta có :
\(B=\dfrac{10^8+1}{10^9+1}< 1\)
\(\Leftrightarrow B=\dfrac{10^8+1}{10^9+1}< \dfrac{10^8+1+9}{10^9+1+9}=\dfrac{10^8+10}{10^9+10}=\dfrac{10\left(10^7+1\right)}{10\left(10^8+1\right)}=\dfrac{10^7+1}{10^8+1}=A\)
\(\Leftrightarrow B< A\)
Ta có:
\(\dfrac{n}{3n+1}=\dfrac{2n}{2\left(3n+1\right)}=\dfrac{2n}{6n+2}\)
\(\dfrac{2n}{6n+2}< \dfrac{2n}{6n+1}\Rightarrow\dfrac{n}{3n+1}< \dfrac{2n}{6n+1}\)
Ta có:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(B=\dfrac{10^8+1}{10^9+1}< 1\)
\(\Rightarrow B< \dfrac{10^8+1+9}{10^9+1+9}\Rightarrow B< \dfrac{10^8+10}{10^9+10}\Rightarrow B< \dfrac{10\left(10^7+1\right)}{10\left(10^8+1\right)}\Rightarrow B< \dfrac{10^7+1}{10^8+1}=A\)\(\Rightarrow B< A\)
Bài 1: Gọi phân số đó là \(\dfrac{a}{b}\)
Ta có: \(\dfrac{200}{520}=\dfrac{5}{13}\)\(=>\dfrac{a}{b}=\dfrac{5k}{13k}\)
a) => a - b = 5k - 13k = 184
=> k.( 5 - 13 ) = 184
=> k.(-8) = 184 => k = -23
=> \(\dfrac{a}{b}=\dfrac{5.\left(-23\right)}{13.\left(-23\right)}=\dfrac{-115}{-229}\)
b) => a.b = 5k.13k = 9360
=> k^2.65 = 9360
=> k^2=144
=> \(\left[{}\begin{matrix}k^2=12^2\\k^2=-12^2\end{matrix}\right.=>\left[{}\begin{matrix}k=12\\k=-12\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{60}{156}\\\dfrac{a}{b}=\dfrac{-60}{-156}\end{matrix}\right.\)
Bài 2: a) đê A \(\in Z\) <=> n+1 \(⋮\) n-3
<=> n-3+4 \(⋮\) n-3 <=> 4 \(⋮\) n-3
<=> n-3 \(\in\) Ư(4)
<=> n-3 \(\in\) \(\left\{-1,1,-2,2,4,-4\right\}\)
<=> n \(\in\left\{2,4,1,5,7,-1\right\}\)
b) Gọi d là UCLN(n-1,n+3)
=> \(\left\{{}\begin{matrix}n-1⋮d\\n+3⋮d\end{matrix}\right.\)
=> \(n-1-\left(n+3\right)⋮d\)
=> \(n-1-n-3⋮d=>-4⋮d\)
=> d = 4
=> \(\left\{{}\begin{matrix}n-1\ne4k\\n+3\ne4k\end{matrix}\right.=>\left\{{}\begin{matrix}n\ne4k+1\\n\ne4k-3\end{matrix}\right.\) (để A tối giản)
Bài 3: Gọi a là tử của phân số cần tìm
Theo bài ra ta có : \(\dfrac{a}{15}=\dfrac{a-2}{15.2}=>\dfrac{a}{15}=\dfrac{a-2}{30}\)
=> 30a = 15.(a-2)
=> 30a = 15a - 30
=> 15a - 30a = 30
=> -15a = 30 => a = -2
=> Phân số cần tìm là: \(-\dfrac{2}{15}\)
Bài 4: do 10^11-1 < 10^12-1 => \(\dfrac{10^{11}-1}{10^{12}-1}< 1\)
Ta có:
\(\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{10^{11}-1+11}{10^{12}-1+11}=\dfrac{10^{11}+10}{10^{12}+10}=\dfrac{10.\left(10^{10}+1\right)}{10.\left(10^{11}+1\right)}=\dfrac{10^{10}+1}{10^{11}+1}\)
=> \(\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{10^{10}+1}{10^{11}+1}\)
Bài 5: \(\dfrac{1}{m}+\dfrac{n}{6}=\dfrac{1}{2}=>\dfrac{1}{m}=\dfrac{1}{2}-\dfrac{n}{6}=>\dfrac{1}{m}=\dfrac{3}{6}-\dfrac{n}{6}=>\dfrac{1}{m}=\dfrac{3-n}{6}\)
=> (3-n).m = 6
=> 3-n, m \(\inƯ\left(6\right)\)
Đến đây bn tự lập bảng giá trị nhé, mình hơi nhác
Chúc bn học tốt
Bài 1:
a) \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)
Quy đồng \(VP\) ta được:
\(VP=\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(\Rightarrow VP=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}\)
\(\Rightarrow VP=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)
\(\Rightarrow VP=VT\)
Vậy \(\forall n\in Z,n>0\Rightarrow\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\) (Đpcm)
b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
Bài 3:
a) \(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{1+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)
b) A=\(\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{5}+\dfrac{1}{5}.\dfrac{1}{6}+\dfrac{1}{6}.\dfrac{1}{7}+\dfrac{1}{7}.\dfrac{1}{8}+\dfrac{1}{8}.\dfrac{1}{9}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\)
\(=\dfrac{1}{2}-\dfrac{1}{9}\)
\(=\dfrac{7}{18}\)
B=\(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)
\(=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)
\(=\dfrac{1}{5}-\dfrac{1}{12}\)
\(=\dfrac{7}{60}\)
Sử dụ ''2'' ta có
\(\dfrac{n}{n+1}.\dfrac{n+1}{n+3}=\dfrac{n^2+2n+n}{n^2+2n+1}\ge1.\)
Suy ra
\(\dfrac{n}{n+1}\) lớn hơn \(\dfrac{n+1}{n+3}\) \(\in N\)
Mk mới học mong các bạn giúp đỡ