K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2021

a, \(\sqrt{15}+\sqrt{8}< \sqrt{16}+\sqrt{9}=4+3=7\)

\(\Rightarrow\sqrt{15}+\sqrt{8}< 7\)

b, \(\sqrt{10}+\sqrt{17}+1>\sqrt{9}+\sqrt{16}+1=3+4+1=8\)

\(\sqrt{61}< \sqrt{64}=8\)

\(\Rightarrow\sqrt{10}+\sqrt{17}+1>\sqrt{61}\)

c, \(\sqrt{10}+\sqrt{5}+1>\sqrt{9}+\sqrt{4}+1=3+2+1=6\)

\(\sqrt{35}< \sqrt{36}=6\)

\(\Rightarrow\sqrt{10}+\sqrt{5}+1>\sqrt{35}\)

3 tháng 7 2021

\(6-\sqrt{17}=\sqrt{36}-\sqrt{17}\)

Với : 

\(\sqrt{36}-\sqrt{17}>\sqrt{31}-\sqrt{17}\)

Mặt khác : 

\(\sqrt{31}-\sqrt{17}>\sqrt{31}-\sqrt{19}\)

Nên : 

\(6-\sqrt{17}>\sqrt{31}-\sqrt{19}\)

Cách khác:

Ta có: \(\left(\sqrt{31}-\sqrt{19}\right)^2=50-2\sqrt{589}\)

\(\left(6-\sqrt{17}\right)^2=53-12\sqrt{17}=50+3-12\sqrt{17}\)

mà \(-2\sqrt{589}< 3-12\sqrt{17}\)

nên \(\sqrt{31}-\sqrt{19}>6-\sqrt{17}\)

21 tháng 7 2016

\(a,10^{30}=2^{30}.5^{30}\)

     \(2^{100}=\left(2^{50}\right)^2\)

\(\Rightarrow10^{30}< 2^{100}\)

tt

31 tháng 7 2021

( 3x-1) ( x2+ 9) = (3x-1) (7x-10)

⇒( 3x-1) ( x2+ 9) - (3x-1) (7x-10) = 0

⇒( 3x-1) (( x2+ 9)-(7x-10)) = 0

⇒( 3x-1)(x2+9-7x+10)=0

⇒( 3x-1)(x2-7x+19)=0

\(\left[{}\begin{matrix}3x-1=0\\x^2-7x+19=0\end{matrix}\right.\)

3x-1=0

⇒x=\(\dfrac{1}{3}\)

x2-7x+19=0

⇒ \(x^2-\dfrac{7}{2}x-\dfrac{7}{2}x+\left(\dfrac{7}{2}\right)^2+\dfrac{27}{4}=0\)

⇒ \(\left(x-\dfrac{7}{2}\right)^2+\dfrac{27}{4}=0\)

vì \(\left(x-\dfrac{7}{2}\right)^2\ge0\)\(\dfrac{27}{4}>0\)

⇒ \(\left(x-\dfrac{7}{2}\right)^2+\dfrac{27}{4}>0\)

⇒ x vô nghiệm

Vậy x= \(\dfrac{1}{3}\)

 

31 tháng 7 2021

\(\left(3x-1\right)\left(x^2+9\right)=\left(3x-1\right)\left(7x-10\right)\\ \Leftrightarrow\left(3x-1\right)\left(x^2+9\right)-\left(3x-1\right)\left(7x-10\right)\\ \Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\\ \Leftrightarrow\left(3x-1\right)\left(x^2-4x-3x+12\right)=0\\ \Leftrightarrow\left(3x-1\right)\left[x\left(x-4\right)-3\left(x-4\right)\right]=0\\ \Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}3x-1=0\\x-3=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=4\end{matrix}\right.\)

27 tháng 6 2023

`A=4(3^2+1)(3^4+1)...(3^64+1)`

`=>2A=(3^2-1)(3^2+1)(3^4+1)...(3^64+1)`

- Ta có: 

`(3^2-1)(3^2+1)=3^4-1`

`(3^4-1)(3^4+1)=3^16-1`

`....`

`(3^64-1)(3^64+1)=3^128-1`

Suy ra `2A=3^128-1=B`

`=>A<B`

 

đơn giản 

nhưng trả lời câu hỏi của tớ đã