K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2019

Thay x = 1 và y = -2 vào biểu thức M ta được

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vậy tại x = 1 và y = - 2 thì M < 1.

Chọn đáp án C

bài 1 a. tính tổng M=\(\dfrac{1}{2}\)\(x^5\)y-\(\dfrac{3}{4}\)\(x^5\)y+\(x^5\)y b.Tính giá trị của biểu thức M tại x=-1,y=\(\dfrac{1}{3}\) c. với giá trị nào của x,y thì M=0 bài 2: cho biểu thức P=\(\dfrac{x+y}{z+t}\)+\(\dfrac{y+z}{t+x}\)+\(\dfrac{z+t}{x+y}\)+\(\dfrac{t+x}{z+y}\) Tìm giá trị của P. Biết rằng: \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\) bài 3: Tính giá trị của biểu...
Đọc tiếp

bài 1

a. tính tổng M=\(\dfrac{1}{2}\)\(x^5\)y-\(\dfrac{3}{4}\)\(x^5\)y+\(x^5\)y

b.Tính giá trị của biểu thức M tại x=-1,y=\(\dfrac{1}{3}\)

c. với giá trị nào của x,y thì M=0

bài 2:

cho biểu thức P=\(\dfrac{x+y}{z+t}\)+\(\dfrac{y+z}{t+x}\)+\(\dfrac{z+t}{x+y}\)+\(\dfrac{t+x}{z+y}\)

Tìm giá trị của P. Biết rằng:

\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)

bài 3:

Tính giá trị của biểu thức

\(\dfrac{3a-b}{2a+7}+\dfrac{3b-a}{2b-7}v\text{ới}\) a-b=7 và a\(\ne\)-3,5;b\(\ne\)3,5

bài 4:

Tính nhanh giá trị của biểu thức sau :

M=\(3\dfrac{1}{117}.4\dfrac{1}{119}-1\dfrac{116}{117}.5\dfrac{118}{119}-\dfrac{5}{119}\)

Bài 5: cho 3 số a,b,c thỏa mãn abc=1 tính

S=\(\dfrac{1}{1+a+ab}+\dfrac{1}{1+b+bc}+\dfrac{1}{1+c+ca}\)

bài 6:

tìm các số nguyên dương a,b,c biết rằng

\(a^3-b^3-c^3=3ab\) (1)

\(a^2\)=2(b+c) (2)

bài 7

cho A=\(x^{2014}-2013x^{2013}-2013x^{2012}-2013x^{2011}-...-2013x+1\)

tính giá trị của A khi x=2014

1

Câu 7:

x=2014 nên x-1=2013

\(A=x^{2014}-x^{2013}\left(x-1\right)-x^{2012}\left(x-1\right)-...-x\left(x-1\right)+1\)

\(=x^{2014}-x^{2014}+x^{2013}-x^{2013}+x^{2012}-...-x^2+x+1\)

=x+1

=2014+1=2015

23 tháng 10 2018

a) (1/3)^500=(1/3)^5*100=(1/3*5)^100=(5/3)^100

(1/5)^300=(1/5)^3*100=(1/5*3)^100=(3/5)^100

Vì 5/3 >3/5

=>(5/3)^100 > (3/5)^100

Vậy (1/3)^500>(1/5)^300

Dấu "^" là dấu lũy thừa nha bạn

23 tháng 10 2018

hộ mik câu b nha

30 tháng 3 2017

1 . Ta có : x2\(\ge0\) với \(\forall x\)

3|y-2|\(\ge0\) với \(\forall\)y

\(\Rightarrow x^2+3\left|y-2\right|\ge0voi\forall x\)

\(\Rightarrow C\ge-1voi\forall x\) và y

Dấu"=" xảy ra khi x2 = 0 và 3|y-2| = 0

Từ đó tính ra x = .. y=

Vậy Min C=-1\(\Leftrightarrow x=0;y=2\)

31 tháng 3 2017

Bài 2:

Giải:
Do \(\left|x-2\right|+3\ge0\) nên để B lớn nhất thì \(\left|x-2\right|+3\) nhỏ nhất

Ta có: \(\left|x-2\right|\ge0\)

\(\Rightarrow\left|x-2\right|+3\ge3\)

\(\Rightarrow B=\dfrac{1}{\left|x-2\right|+3}\le\dfrac{1}{3}\)

Dấu " = " khi \(x-2=0\Rightarrow x=2\)

Vậy \(MAX_B=\dfrac{1}{3}\) khi x = 2

Bài 1:Tính:a,\(\sqrt{\left(a-2\right)^2}\)với a\(\ge\)2b,\(\sqrt{\left(a+10\right)^2}\)với a<-10c,\(\sqrt{\left(3-a\right)^2}\)(a\(\in\)R)Bài 2;Tìm x để:a,\(\sqrt{x}\)=1/2b,\(\sqrt{x+7}\)=4c,\(\sqrt{2x-1}\)=1/3d,\(\sqrt{x+1}\)=0e,\(\sqrt{x-3}\)+2=0f,\(\sqrt{2x}\)+3=9Bài 3:Cho A=\(\sqrt{x^2+y^2-2z^2}\).Tính giá trị A khi x=\(\sqrt{5}\),y=2,z=0Bài 4:So sánh:a,\(4\frac{8}{33}\)và 3\(\sqrt{2}\)b,5.\(\sqrt{\left(-10\right)^2}\) và 10.\(\sqrt{\left(-5\right)^2}\)Bài 5:Không...
Đọc tiếp

Bài 1:Tính:

a,\(\sqrt{\left(a-2\right)^2}\)với a\(\ge\)2

b,\(\sqrt{\left(a+10\right)^2}\)với a<-10

c,\(\sqrt{\left(3-a\right)^2}\)(a\(\in\)R)

Bài 2;Tìm x để:

a,\(\sqrt{x}\)=1/2

b,\(\sqrt{x+7}\)=4

c,\(\sqrt{2x-1}\)=1/3

d,\(\sqrt{x+1}\)=0

e,\(\sqrt{x-3}\)+2=0

f,\(\sqrt{2x}\)+3=9

Bài 3:Cho A=\(\sqrt{x^2+y^2-2z^2}\).Tính giá trị A khi x=\(\sqrt{5}\),y=2,z=0

Bài 4:So sánh:

a,\(4\frac{8}{33}\)và 3\(\sqrt{2}\)

b,5.\(\sqrt{\left(-10\right)^2}\) và 10.\(\sqrt{\left(-5\right)^2}\)

Bài 5:Không dùng bảng số liệu máy tính hãy so sánh:

a.\(\sqrt{26}+\sqrt{17}\) và 9

b,\(\sqrt{8}-\sqrt{5}\) và 1

c,\(\sqrt{63-27}\) và \(\sqrt{63}-\sqrt{27}\)

Bài 6:Hãy so sánh A và B

A=\(\sqrt{225}-\frac{1}{\sqrt{5}}\)-1

B=\(\sqrt{196}-\frac{1}{\sqrt{6}}\) 

Bài 7:a,CHo M=\(\frac{\sqrt{x}-1}{2}\).Tìm x\(\in\)Z và x<50 để m có giá trị nguyên

         b,Cho P=\(\frac{9}{\sqrt{5}-5}\).Tìm x\(\in\)Z để P có giá trị nguyên

Bài 8:cho P=1/4+2\(\sqrt{x-3}\);Q=9.3.\(\sqrt{x-2}\)

a,Tìm GTNN của P

b,Tìm giá trị lớn nhất của Q

Bài 8:Cho biểu thức :A=|x-1/2|+3/4-x

a,rút gọn A

b,Tìm GTNN của A

Baif9:Cho biểu thức:B=0,(21)-x-?x-0,(4)|

a,Rút gọn B

b,Tìm GTLN của B

Bài 10:So sánh:

a,0,55(56) và 0,5556

b,-1/7 và -0,1428(57)

c,\(2\frac{2}{3}\)và 2,67

d,-7/6 và 1,16667

e,0,(31) và 0,3(11)

      Mn cố gắng giúp mk hết,mình cảm ơn nhìu.Ai xong trước mk tick cho:))

6
3 tháng 2 2019

các bạn giúp mk để mk ăn tết cho zui

3 tháng 2 2019

luong thuy anh giúp mk vs

28 tháng 2 2019

a ) \(N=\left(x+1\right)^2+\left(y-\sqrt{2}^2\right)+2008\ge0+0+2008=2008\)

=> MinN đạt được bằng 2008 khi

\(\left\{{}\begin{matrix}x=-1\\y=\sqrt{2}\end{matrix}\right.\)

Thay vào M ,ta có

\(3x+\dfrac{x^2-y^2}{x^2+1}=-3+\dfrac{9-2}{1+1}=-3+3,5=0,5\)

b) Với x , y dương , ta được ngay ĐPCM

Với x âm , y âm , ta cũng được ĐPCM

Vậy nên xét trường hợp x,y trái dấu

\(2x^4y^2\ge0\)

\(7x^3y^5\le0\)

\(\Rightarrow2x^4y^2-7x^3y^5\ge0\) ( ĐPCM)

c)

\(2^{x+1}+2^{x+4}+2^{x+5}=2^5\cdot5^2\)

\(\Rightarrow2^{x+1}\left(1+2^3+2^4\right)=2^5\cdot5^2\)

\(\Rightarrow2^{x+1}\cdot5^2=2^5\cdot5^2\)

\(\Rightarrow2^{x+1}=2^5\Rightarrow x=4\)

3 tháng 6 2016

ad-bc=1 =>  ad > bc  => a/b > c/d  => x>y            (1)

cn - dm= 1 => cn > dm => c/d > m/n =>  y> z         (2)

Từ (1) và (2) => x > y> z

 

18 tháng 10 2022

a: \(A=\left(9+71\right)\cdot\left(71-68\right)=3\cdot80=240\)

b: =>x^2=16

=>x=-4

c: =>x^4=(2,5)^4

=>x=-2,5

d: \(\Leftrightarrow x\cdot\dfrac{10}{7}=-5\)

=>\(x=-5:\dfrac{10}{7}=-\dfrac{35}{10}=-\dfrac{7}{2}\)

25 tháng 6 2017

em chịu chị ơi

31 tháng 8 2020

                                                                     Bài giải

Thay \(x=\frac{a}{m}\text{ ; }y=\frac{b}{m}\text{ ; }z=\frac{a+b}{m}\) vào  \(P\) ta được : 

\(P=\frac{\frac{a}{m}+\frac{b}{m}}{\frac{b}{m}+\frac{a+b}{m}}=\frac{\frac{a+m}{m}}{\frac{a+2b}{m}}=\frac{a+b}{m}\cdot\frac{m}{a+2b}=\frac{a+b}{a+2b}\)

Áp dụng : 

\(\frac{\frac{1}{4}+\frac{1}{2}}{\frac{1}{2}+\frac{3}{4}}=\frac{\frac{3}{4}}{\frac{5}{4}}=\frac{3}{4}\cdot\frac{4}{5}=\frac{3}{5}\)

31 tháng 8 2020

Cảm ơn bạn!

Ai giúp mình hai câu cuối với!

I/ Trắc nghiệm: Câu 1: Gía trị của biểu thức x3y - x2y2 -5 tại x = 1; y = -1 là: A. 0 B. -7 C. 1 D. 6 Câu 2: Kết quả phép nhân hai đơn thức (-\(\dfrac{1}{3}\)x3y)2. (-9x2yz2) là: A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là: A. 0 B. 4 C. 3 D. 7 Câu 4: Nghiệm của đa thức P(x) = 3x + \(\dfrac{1}{5}\)...
Đọc tiếp

I/ Trắc nghiệm:

Câu 1: Gía trị của biểu thức x3y - x2y2 -5 tại x = 1; y = -1 là:

A. 0 B. -7 C. 1 D. 6

Câu 2: Kết quả phép nhân hai đơn thức (-\(\dfrac{1}{3}\)x3y)2. (-9x2yz2) là:

A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác

Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là:

A. 0 B. 4 C. 3 D. 7

Câu 4: Nghiệm của đa thức P(x) = 3x + \(\dfrac{1}{5}\) là:

A. x = \(\dfrac{1}{3}\) B. x = -\(\dfrac{1}{5}\) C. x = \(\dfrac{1}{5}\) D. x = -\(\dfrac{1}{15}\)

Câu 5: Kết quả thu gọn -x5y3 + 3x5y3 - 7x5y3 là :

A. -5x5y3 B. 5x5y3 C. 10x5y3 D. -8x5y3

II/ Tự luận

Bài 1; Thu gọn biểu thức, tìm bậc, hệ số và phần biến

\(\dfrac{-2}{3}\)​x3y2z(3x2yz)2

Bài 2:

a) Tìm đa thức A,biết: A + (x2y - 2xy2 + 5xy + 1) = -2x2y + xy2 - xy -1
b) Tính giá trị của đa thức A, biết x = 1, y = 2

Bài 3: Cho f(x) = 9 - x5 + 4x - 2x3 + x2 - 7x4

g(x) = x5 - 9 + 2x2 + 7x4 + 2x3 - 3x

a) Sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến

b) Tính f(x) + g(x); g(x) - f(x)

Bài 4:

a) Tìm nghiệm của đa thức P(x) = -x + 3

b) Tìm hệ số m của đa thức A(x) = mx2 + 5x - 3

Biết rằng đa thức có 1 nghiệm là x = -2?

1
5 tháng 4 2018

I . Trắc Nghiệm

1B . 2D . 3C . 5A

II . Tự luận

2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1

\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)

=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1

=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)

= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2

b, thay x=1,y=2 vào đa thức A

Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2

= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2

= -6 + 12 - 12 - 2

= -8

3,Sắp xếp

f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)

=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x

g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x

=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x

b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)

=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x

=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)

= 3x\(^2\) + x

g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)

=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x

=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)

= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x