Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(p=\frac{x+y}{y+z}=\frac{\frac{a}{m}+\frac{b}{m}}{\frac{b}{m}+\frac{a+b}{m}}=\frac{\frac{a+b}{m}}{\frac{a+b^2}{m}}=\frac{a+b}{a+b^2}\)
\(\frac{\frac{1}{4}+\frac{1}{2}}{\frac{1}{2}+\frac{3}{4}}=\frac{\frac{1}{4}+\frac{2}{4}}{\frac{2}{4}+\frac{1+2}{4}}=\frac{1+2}{1+2^2}=\frac{3}{5}\)
Hok tốt !!!!!!!!!
1.
\(10x=|x+\dfrac{1}{10}|+|x+\dfrac{2}{10}|+...+|x+\dfrac{9}{10}| \ge 0\)
\(\Rightarrow x\ge0\)
\(pt\Leftrightarrow x+\frac{1}{10}+x+\frac{2}{10}+...+x+\frac{9}{10}=10x\)
\(\Leftrightarrow x=\frac{1}{10}+\frac{2}{10}+...+\frac{9}{10}=\frac{9}{2}\)
\(\Rightarrow x=\frac{9}{2}\)
4.
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{b+3c}=\frac{b}{c+3a}=\frac{c}{a+3b}=\frac{a+b+c}{4\left(a+b+c\right)}=\frac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}4a=b+3c\left(1\right)\\4b=c+3a\left(2\right)\\4c=a+3b\left(3\right)\end{matrix}\right.\)
Từ \(\left(1\right);\left(2\right)\Rightarrow4a=b+3\left(4b-3a\right)\)
\(\Rightarrow12a=12b\Rightarrow a=b\left(4\right)\)
Từ \(\left(1\right);\left(3\right)\Rightarrow4c=a+3\left(4a-3c\right)\)
\(\Rightarrow12a=12c\Rightarrow a=c\left(5\right)\)
Từ \(\left(4\right);\left(5\right)\Rightarrow a=b=c\left(đpcm\right)\)
2.P=\(\frac{3-a}{a+10}\)
a, để P>0
TH1 3-a>0 và a+10 >0
=> a<3 và a> -10
=> -10<a<3
TH2 3-a<0 và a+10<0
=> a>3 và a<-10(vô lý)
Vậy để P>0 thì -10<a<3
b.để P<0
TH1 3-a<0 và a+10>0
a>3 và a>-10
Vậy a>3
TH2 3-a>0 và a+10<0
=> a<3 và a<-10
Vậy a<-10
vậy để P<0 thì a >3 hoặc a<-10
bài 3.
a.\(\frac{7}{3}\)<x<\(\frac{17}{2}\)=>\(\frac{14}{6}\)<x<\(\frac{51}{6}\)
Vậy x=\(\left\{\frac{15}{6};\frac{16}{6};\frac{17}{6};..........;\frac{50}{6}\right\}\)
b.\(\frac{-3}{2}\)<y<2=>\(\frac{-3}{2}\)<y<\(\frac{4}{2}\)
Vậy y=\(\left\{\frac{-2}{2};\frac{-1}{2};\frac{0}{2};\frac{1}{2};\frac{2}{2};\frac{3}{2}\right\}\)
c.\(\frac{-17}{3}\)<z<\(\frac{-3}{2}\)=>\(\frac{-34}{6}\)<z<\(\frac{-9}{6}\)
Vậy z=\(\left\{\frac{-33}{6};\frac{-32}{6};\frac{-31}{6};.........\frac{-10}{6}\right\}\)
1)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{8}=2\Rightarrow x=16\\\frac{y}{12}=2\Rightarrow x=24\\\frac{z}{15}=2\Rightarrow z=30\end{matrix}\right.\)
2)
Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)
xy=10 <=> 2k.5k=10
<=>10k2=10
<=> k=1
\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)
3)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)
\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)
\(\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)
Ta có \(\frac{2a+b+c}{b+c}=\frac{2b+c+a}{c+a}=\frac{2c+a+b}{a+b}\Rightarrow\frac{2a}{b+c}+1=\frac{2b}{a+c}+1=\frac{2c}{a+b}+1\)
=> \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{3}{2}\)
^_^
Bài 1: Đặt \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}=k\)
\(\Rightarrow\hept{\begin{cases}a=2016k\\b=2017k\\c=2018k\end{cases}}\).Thay vào M,ta có:
\(M=4\left(2016k-2017k\right)\left(2017k-2018k\right)-\left(2018k-2016k\right)^2\)
\(=4.\left(-1k\right)\left(-1k\right)-\left(2k\right)^2\)
\(=4k^2-4k^2=0\)
1) ADTCDTSBN
có: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-7}=\frac{x-y-z}{3-5+7}=\frac{20}{5}=4.\)
=> ...
Bài giải
Thay \(x=\frac{a}{m}\text{ ; }y=\frac{b}{m}\text{ ; }z=\frac{a+b}{m}\) vào \(P\) ta được :
\(P=\frac{\frac{a}{m}+\frac{b}{m}}{\frac{b}{m}+\frac{a+b}{m}}=\frac{\frac{a+m}{m}}{\frac{a+2b}{m}}=\frac{a+b}{m}\cdot\frac{m}{a+2b}=\frac{a+b}{a+2b}\)
Áp dụng :
\(\frac{\frac{1}{4}+\frac{1}{2}}{\frac{1}{2}+\frac{3}{4}}=\frac{\frac{3}{4}}{\frac{5}{4}}=\frac{3}{4}\cdot\frac{4}{5}=\frac{3}{5}\)
Cảm ơn bạn!
Ai giúp mình hai câu cuối với!