K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{a+m}{b+m}=\frac{b\left(a+m\right)}{b\left(b+m\right)}=\frac{ab+bm}{b\left(b+m\right)};\frac{a}{b}=\frac{a\left(b+m\right)}{b\left(b+m\right)}=\frac{ab+am}{b\left(b+m\right)}\)

xét a<b \(\Rightarrow\frac{a+m}{b+m}>\frac{a}{b}\)

xét a=b \(\Rightarrow\frac{a+m}{b+m}=\frac{a}{b}\)

xét a>b \(\Rightarrow\frac{a+m}{b+m}

5 tháng 7 2016

Ta có:

\(1-\frac{-2015}{-2016}=1-\frac{2015}{2016}=\frac{1}{2016}\)

\(1-\frac{-2016}{-2017}=1-\frac{2016}{2017}=\frac{1}{2017}\)

Vì \(\frac{1}{2016}>\frac{1}{2017}\Rightarrow\frac{-2015}{-2016}< \frac{-2016}{-2017}\)

Đây là cách so sánh phần bù, bạn có thể lên mạng tham khảo thêm nhé :)

28 tháng 4 2019

4a) \(\frac{-2}{3}x=\frac{3}{10}-\frac{1}{5}=\frac{1}{10}\)

\(\Leftrightarrow x=\frac{1}{10}:\frac{-2}{3}=\frac{1}{10}.\frac{3}{-2}=\frac{3}{-20}\)

Vậy x=\(\frac{3}{-20}\)

b) \(\frac{2}{3}x-\frac{3}{2}x=\frac{5}{12}\)

\(\Leftrightarrow\left(\frac{2}{3}-\frac{3}{2}\right)x=\frac{5}{12}\)

\(\Leftrightarrow\frac{-5}{6}x=\frac{5}{12}\)

\(\Leftrightarrow x=\frac{5}{12}:\frac{-5}{6}=\frac{5}{12}.\frac{6}{-5}=\frac{1}{-2}\)

Vậy x=\(\frac{1}{-2}\)

g)Sửa đề: \(\left|4x-1\right|=\left(-3\right)^2\)

\(\Leftrightarrow\left|4x-1\right|=9\)

\(\Rightarrow\left[{}\begin{matrix}4x-1=9\\4x-1=\left(-9\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-2\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{5}{2};-2\right\}\)

i) \(\left(x-1^3\right)=125\)

\(\Leftrightarrow x-1=125\)

\(\Leftrightarrow x=125+1=126\)

Vậy x=126

k) \(\left(x+\frac{1}{2}\right).\left(\frac{2}{3}-2x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{-1}{2};\frac{1}{3}\right\}\)

29 tháng 4 2019

xin lỗi câu h tui xin chữa lại là:\(|x+70\%|=2\frac{1}{5}\)

25 tháng 2 2017

Ta có:

\(\frac{a}{b}< 1\\ \Rightarrow a< b\\ \Rightarrow am< bm\left(m\in N^{\cdot}\right)\\ \Rightarrow am+ab< bm+ab\\\Rightarrow a\left(b+m\right)< b\left(a+m\right)\\ \Rightarrow\frac{a}{b} < \frac{a+m}{b+m}\)